HIERARCHICAL FEDERATED LEARNING ACROSS HETEROGENEOUS CELLULAR NETWORKS

被引:0
|
作者
Abad, M. S. H. [1 ]
Ozfatura, E. [2 ]
Gunduz, D. [2 ]
Ercetin, O. [1 ]
机构
[1] Sabanci Univ, Fac Engn & Nat Sci, Istanbul, Turkey
[2] Imperial Coll London, Dept Elect & Elect Engn, London, England
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Cellular networks; federated learning; mobile edge processing; resource allocation;
D O I
10.1109/icassp40776.2020.9054634
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We consider federated edge learning (FEEL), where mobile users (MUs) collaboratively learn a global model by sharing local updates on the model parameters rather than their datasets, with the help of a mobile base station (MBS). We optimize the resource allocation among MUs to reduce the communication latency in learning iterations. Observing that the performance in this centralized setting is limited due to the distance of the cell-edge users to the MBS, we introduce small cell base stations (SBSs) orchestrating FEEL among MUs within their cells, and periodically exchanging model updates with the MBS for global consensus. We show that this hierarchical federated learning (HFL) scheme significantly reduces the communication latency without sacrificing the accuracy.
引用
收藏
页码:8866 / 8870
页数:5
相关论文
共 50 条
  • [1] Federated Learning as a Service for Hierarchical Edge Networks with Heterogeneous Models
    Gao, Wentao
    Tavallaie, Omid
    Chen, Shuaijun
    Zomaya, Albert
    SERVICE-ORIENTED COMPUTING, ICSOC 2024, PT I, 2025, 15404 : 85 - 99
  • [2] Enhanced Hybrid Hierarchical Federated Edge Learning Over Heterogeneous Networks
    Chen, Qimei
    You, Zehua
    Wen, Dingzhu
    Zhang, Zhaoyang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (11) : 14601 - 14614
  • [3] Learning to Generalize in Heterogeneous Federated Networks
    Chen, Cen
    Ye, Tiandi
    Wang, Li
    Gao, Ming
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 159 - 168
  • [4] Private and heterogeneous personalized hierarchical federated learning using Conditional Generative Adversarial networks
    Afzali, Afsaneh
    Shamsinejadbabaki, Pirooz
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 276
  • [5] Data-Heterogeneous Hierarchical Federated Learning with Mobility
    Chen, Tan
    Yan, Jintao
    Sun, Yuxuan
    Zhou, Sheng
    Gunduz, Deniz
    Niu, Zhisheng
    2023 35TH INTERNATIONAL TELETRAFFIC CONGRESS, ITC-35, 2023,
  • [6] Efficient Hierarchical Personalized Federated Learning on Heterogeneous Data
    Wang, Sai
    You, Changsheng
    Zhao, Junhui
    Gong, Yi
    2024 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA, ICCC, 2024,
  • [7] Federated Learning in Heterogeneous Networks With Unreliable Communication
    Zheng, Paul
    Zhu, Yao
    Hu, Yulin
    Zhang, Zhengming
    Schmeink, Anke
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3823 - 3838
  • [8] FedProto: Federated Prototype Learning across Heterogeneous Clients
    Tan, Yue
    Long, Guodong
    Liu, Lu
    Zhou, Tianyi
    Lu, Qinghua
    Jiang, Jing
    Zhang, Chengqi
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8432 - 8440
  • [9] Federated Learning with User Mobility in Hierarchical Wireless Networks
    Feng, Chenyuan
    Yang, Howard H.
    Hu, Deshun
    Quek, Tony Q. S.
    Zhao, Zhiwei
    Min, Geyong
    2021 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2021,
  • [10] Dynamic Edge Association in Hierarchical Federated Learning Networks
    Lim, Wei Yang Bryan
    Ng, Jer Shyuan
    Xiong, Zehui
    Garg, Sahil
    Zhang, Yang
    Niyato, Dusit
    Miao, Chunyan
    2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1124 - 1131