Robust feature learning method for epileptic seizures prediction based on long-term EEG signals

被引:4
|
作者
Baghdadi, Asma [1 ]
Fourati, Rahma [1 ]
Aribi, Yassine [1 ]
Siarry, Patrick [2 ]
Alimi, Adel M. [1 ]
机构
[1] Univ Sfax, Natl Engn Sch Sfax ENIS, REGIM Lab REs Grp Intelligent Machines, BP 1173, Sfax 3038, Tunisia
[2] Paris Est Creteil Univ, LISSI Lab, Creteil, France
关键词
feature learning; feature extraction; epileptic seizures prediction; raw EEG data; long-short term memory;
D O I
10.1109/ijcnn48605.2020.9207070
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning (DL) has been expensively applied in multiple fields like computer vision, speech recognition and natural language processing. The field of Epileptic seizure prediction didn't receive the deserved attention by DL community, even though, deep neural networks can handle the challenging task of onsets prediction whilst achieving the highest rates of sensitivity, despite the complex nature of EEG signals. In the literature, this issue was addressed differently most of the time using handcrafted temporal and spectral features, machine learning techniques and rarely deep learning with extracted features. In this paper, we introduce an LSTM model designed to address the chaotic nature of an EEG signal in order to predict pre-ictal and inter-ictal states. Our model is evaluated on the publicly available CHBMIT database. We achieved an average sensitivity rate of 0.84 using a Raw EEG data segment as input to the LSTM model.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A Long Short-Term Memory deep learning network for the prediction of epileptic seizures using EEG signals
    Tsiouris, Kostas M.
    Pezoulas, Vasileios C.
    Zervakis, Michalis
    Konitsiotis, Spiros
    Koutsouris, Dimitrios D.
    Fotiadis, Dimitrios, I
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 99 : 24 - 37
  • [2] An efficient, robust and fast method for the offline detection of epileptic seizures in long-term scalp EEG recordings
    Hopfengaertner, R.
    Kerling, F.
    Bauer, V.
    Stefan, H.
    [J]. CLINICAL NEUROPHYSIOLOGY, 2007, 118 (11) : 2332 - 2343
  • [3] Classification of EEG Signals for Prediction of Epileptic Seizures
    Aslam, Muhammad Haseeb
    Usman, Syed Muhammad
    Khalid, Shehzad
    Anwar, Aamir
    Alroobaea, Roobaea
    Hussain, Saddam
    Almotiri, Jasem
    Ullah, Syed Sajid
    Yasin, Amanullah
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (14):
  • [4] The feature extraction of epileptic EEG signals based on nonlinear prediction
    Meng Qing-Fang
    Zhou Wei-Dong
    Chen Yue-Hui
    Peng Yu-Hua
    [J]. ACTA PHYSICA SINICA, 2010, 59 (01) : 123 - 130
  • [5] A robust methodology for classification of epileptic seizures in EEG signals
    Tzimourta, Katerina D.
    Tzallas, Alexandros T.
    Giannakeas, Nikolaos
    Astrakas, Loukas G.
    Tsalikakis, Dimitrios G.
    Angelidis, Pantelis
    Tsipouras, Markos G.
    [J]. HEALTH AND TECHNOLOGY, 2019, 9 (02) : 135 - 142
  • [6] A robust methodology for classification of epileptic seizures in EEG signals
    Katerina D. Tzimourta
    Alexandros T. Tzallas
    Nikolaos Giannakeas
    Loukas G. Astrakas
    Dimitrios G. Tsalikakis
    Pantelis Angelidis
    Markos G. Tsipouras
    [J]. Health and Technology, 2019, 9 : 135 - 142
  • [7] Automatic detection of epileptic seizures in long-term EEG records
    Garces Correa, Agustina
    Orosco, Lorena
    Diez, Pablo
    Laciar, Eric
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2015, 57 : 66 - 73
  • [8] Epileptic Seizures Prediction Based on Unsupervised Learning for Feature Extraction
    Wang, Ruyan
    Wang, Linhai
    He, Peng
    Cui, Yaping
    Wu, Dapeng
    [J]. IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 4643 - 4648
  • [9] Unsupervised feature learning based on autoencoder for epileptic seizures prediction
    Peng He
    Linhai Wang
    Yaping Cui
    Ruyan Wang
    Dapeng Wu
    [J]. Applied Intelligence, 2023, 53 : 20766 - 20784
  • [10] Unsupervised feature learning based on autoencoder for epileptic seizures prediction
    He, Peng
    Wang, Linhai
    Cui, Yaping
    Wang, Ruyan
    Wu, Dapeng
    [J]. APPLIED INTELLIGENCE, 2023, 53 (18) : 20766 - 20784