Chemical nonequilibrium for interacting bosons: Applications to the pion gas

被引:6
|
作者
Fernandez-Fraile, D. [1 ]
Gomez Nicola, A. [1 ]
机构
[1] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
关键词
CHIRAL PERTURBATION-THEORY; BOSE-EINSTEIN CONDENSATION; QUANTUM-FIELD THEORIES; REAL-TIME; FINITE-TEMPERATURE; IMAGINARY-TIME; ENERGY; PHASE; HADRONS; STATE;
D O I
10.1103/PhysRevD.80.056003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider an interacting pion gas in a stage of the system evolution where thermal but not chemical equilibrium has been reached, i.e., for temperatures between thermal and chemical freeze-out T-ther < T < T-chem reached in relativistic heavy-ion collisions. Approximate particle number conservation is implemented by a nonvanishing pion number chemical potential mu(pi) within a diagrammatic thermal field-theory approach, valid in principle for any bosonic field theory in this regime. The resulting Feynman rules are derived here and applied within the context of chiral perturbation theory to discuss thermodynamical quantities of interest for the pion gas such as the free energy, the quark condensate, and thermal self-energy. In particular, we derive the mu(pi) not equal 0 generalization of Luscher and Gell-Mann-Oakes-Renner-type relations. We pay special attention to the comparison with the conventional kinetic theory approach in the dilute regime, which allows for a check of consistency of our approach. Several phenomenological applications are discussed, concerning chiral symmetry restoration, freeze-out conditions, and Bose-Einstein pion condensation.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Superfluidity in a gas of strongly interacting bosons
    Kavoulakis, G. M.
    Ogren, Y. Yu M.
    Reimann, S. M.
    EUROPHYSICS LETTERS, 2006, 76 (02): : 215 - 221
  • [2] Thermal fluctuations in the interacting pion gas
    Stephanov, M
    PHYSICAL REVIEW D, 2002, 65 (09): : 960081 - 960087
  • [3] THE SPEED OF SOUND IN AN INTERACTING PION GAS
    WELKE, GM
    VENUGOPALAN, R
    PRAKASH, M
    PHYSICS LETTERS B, 1990, 245 (02) : 137 - 141
  • [4] PION CONDENSATION IN AN INTERACTING NEUTRON GAS
    JOHNSON, MB
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (04): : 576 - 576
  • [5] Nonequilibrium time evolution of the condensed state of a fixed number of interacting bosons
    Shimizu, A
    Inoue, J
    Miyadera, T
    QUANTUM COHERENCE AND DECOHERENCE, 1999, : 135 - 138
  • [6] Nonequilibrium Phase Transition of Interacting Bosons in an Intra-Cavity Optical Lattice
    Bakhtiari, M. Reza
    Hemmerich, A.
    Ritsch, H.
    Thorwart, M.
    PHYSICAL REVIEW LETTERS, 2015, 114 (12)
  • [7] Thermodynamic properties of interacting bosons with zero chemical potential
    Stashko, O. S.
    Anchishkin, D., V
    Savchuk, O., V
    Gorenstein, M., I
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (05)
  • [8] Chemical diffusion in an interacting lattice gas: Analytic theory and simple applications
    Gortel, ZW
    Zaluska-Kotur, MA
    PHYSICAL REVIEW B, 2004, 70 (12) : 125431 - 1
  • [9] Dark solitons in a trapped gas of long-range interacting bosons
    Beau, M.
    del Campo, A.
    Frantzeskakis, D. J.
    Horikis, T. P.
    Kevrekidis, P. G.
    PHYSICAL REVIEW A, 2022, 105 (02)
  • [10] Exact canonic eigenstates of the truncated Bogoliubov Hamiltonian in an interacting bosons gas
    Ferrari, Loris
    PHYSICA B-CONDENSED MATTER, 2016, 496 : 38 - 44