On the Termination Time of the One-Sided Asymmetric Hegselmann-Krause Dynamics

被引:0
|
作者
Coulson, Jeremy [1 ]
Steeves, Drew [1 ]
Gharesifard, Bahman [1 ]
Touri, Behrouz [2 ]
机构
[1] Queens Univ, Dept Math & Stat, Kingston, ON K7L 3N6, Canada
[2] Univ Colorado Boulder, Dept Elect Comp & Energy Engn, Boulder, CO USA
关键词
NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we provide a novel upper bound for the termination time of the one-dimensional asymmetric Hegselmann-Krause dynamics, when the asymmetry is one-sided. In addition to the number of agents, our upper bound depends on the ratio of asymmetry and the confidence range in the opinions of agents, and recovers the known O(n(3)) results of the symmetric case. Our proof technique relies on a novel Lyapunov-like function, which measures the spread of the opinion profile. As a by-product, we fully characterize the switching pattern in the opinions of the agents.
引用
收藏
页码:4054 / 4059
页数:6
相关论文
共 50 条
  • [1] Termination Time of Multidimensional Hegselmann-Krause Opinion Dynamics
    Etesami, Seyed Rasoul
    Basar, Tamer
    Nedic, Angelia
    Touri, Behrouz
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 1255 - 1260
  • [2] MIXED HEGSELMANN-KRAUSE DYNAMICS
    LI, Hsin-Lun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (02): : 1149 - 1162
  • [3] Optimal control of the freezing time in the Hegselmann-Krause dynamics
    Kurz, Sascha
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (08) : 633 - 648
  • [4] One-sided Versus Two-sided: A Novel Opinion Dynamics Information-Type Education-Based Hegselmann-Krause Model
    Xu, Minghua
    Luo, Tiling
    Liu, Ruixin
    Wang, Bang
    Xu, Han
    2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 339 - 344
  • [5] On the Hegselmann-Krause conjecture in opinion dynamics
    Kurz, Sascha
    Rambau, Joerg
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (06) : 859 - 876
  • [6] The Hegselmann-Krause dynamics on the circle converge
    Hegarty, Peter
    Martinsson, Anders
    Wedin, Edvin
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (11) : 1720 - 1731
  • [7] MIXED HEGSELMANN-KRAUSE DYNAMICS II
    LI, Hsin-lun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (05): : 2981 - 2993
  • [8] Hegselmann-Krause Dynamics with Limited Connectivity
    Parasnis, Rohit
    Franceschetti, Massimo
    Touri, Behrouz
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 5364 - 5369
  • [9] Mixed Hegselmann-Krause dynamics on infinite graphs
    Li, Hsin-Lun
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (11):
  • [10] The noisy Hegselmann-Krause model for opinion dynamics
    Miguel Pineda
    Raúl Toral
    Emilio Hernández-García
    The European Physical Journal B, 2013, 86