On the Rate of Convergence and Limiting Characteristics for a Nonstationary Queueing Model

被引:3
|
作者
Satin, Yacov [1 ]
Zeifman, Alexander [1 ,2 ,3 ]
Kryukova, Anastasia [1 ]
机构
[1] Vologda State Univ, Dept Appl Math, Vologda 160000, Russia
[2] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Inst Informat Problems, Moscow 119333, Russia
[3] Russian Acad Sci, Vologda Res Ctr, Vologda 160014, Russia
基金
俄罗斯科学基金会;
关键词
queueing systems; rate of convergence; non-stationary; Markovian queueing models; limiting characteristics; PERTURBATION BOUNDS; TIME; STABILITY; SYSTEMS; BIRTH;
D O I
10.3390/math7080678
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consideration is given to the nonstationary analogue of M/M/1 queueing model in which the service happens only in batches of size 2, with the arrival rate lambda(t) and the service rate mu(t). One proposes a new and simple method for the study of the queue-length process. The main probability characteristics of the queue-length process are computed. A numerical example is provided.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Calculation of characteristics of nonstationary queueing systems
    Golovko, N.I.
    Korotaev, I.A.
    Avtomatika i Telemekhanika, 1991, (02): : 97 - 102
  • [2] Upper bounds on the rate of convergence for constant retrial rate queueing model with two servers
    Yacov Satin
    Evsey Morozov
    Ruslana Nekrasova
    Alexander Zeifman
    Ksenia Kiseleva
    Anna Sinitcina
    Alexander Sipin
    Galina Shilova
    Irina Gudkova
    Statistical Papers, 2018, 59 : 1271 - 1282
  • [3] Upper bounds on the rate of convergence for constant retrial rate queueing model with two servers
    Satin, Yacov
    Morozov, Evsey
    Nekrasova, Ruslana
    Zeifman, Alexander
    Kiseleva, Ksenia
    Sinitcina, Anna
    Sipin, Alexander
    Shilova, Galina
    Gudkova, Irina
    STATISTICAL PAPERS, 2018, 59 (04) : 1271 - 1282
  • [4] Nonstationary queues: Estimation of the rate of convergence
    Granovsky, BL
    Zeifman, A
    QUEUEING SYSTEMS, 2004, 46 (3-4) : 363 - 388
  • [5] Nonstationary Queues: Estimation of the Rate of Convergence
    Boris L. Granovsky
    A. Zeifman
    Queueing Systems, 2004, 46 : 363 - 388
  • [6] A queueing theory model of nonstationary traffic flow
    Heidemann, D
    TRANSPORTATION SCIENCE, 2001, 35 (04) : 405 - 412
  • [7] Limiting Characteristics of Queueing Systems with Vanishing Perturbations
    Zeifman, A., I
    Korolev, V. Yu
    Razumchik, R., V
    Satin, Ya A.
    Kovalev, I. A.
    DOKLADY MATHEMATICS, 2022, 106 (02) : 375 - 379
  • [8] Limiting Characteristics of Queueing Systems with Vanishing Perturbations
    A. I. Zeifman
    V. Yu. Korolev
    R. V. Razumchik
    Ya. A. Satin
    I. A. Kovalev
    Doklady Mathematics, 2022, 106 : 375 - 379
  • [9] CONVERGENCE RATE OF AN SMI CANCELER IN NONSTATIONARY NOISE
    GERLACH, K
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1994, 30 (02) : 599 - 604
  • [10] SOME LIMITING RESULTS FOR A QUEUEING MODEL WITH FEEDBACK
    LEMOINE, AJ
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1974, 36 (JUL): : 293 - 304