An indecomposable direct summand of a serial module which is not uniserial

被引:0
|
作者
Prihoda, Pavel [1 ]
机构
[1] Charles Univ Prague, Dept Algebra, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Serial modules; chain rings; direct sum decompositions; PROJECTIVE-MODULES; MODEL-THEORY; DECOMPOSITIONS;
D O I
10.1080/00927872.2019.1654491
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a construction of indecomposable direct summands of serial modules which are not uniserial.
引用
收藏
页码:638 / 643
页数:6
相关论文
共 50 条
  • [1] INDECOMPOSABLE DECOMPOSITIONS AND THE MINIMAL DIRECT SUMMAND CONTAINING THE NILPOTENTS
    BIRKENMEIER, GF
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 73 (01) : 11 - 14
  • [2] ON COMMUTATIVE RINGS OVER WHICH SINGULAR SUBMODULE IS A DIRECT SUMMAND FOR EVERY MODULE
    CATEFORIS, VC
    SANDOMIE.FL
    PACIFIC JOURNAL OF MATHEMATICS, 1969, 31 (02) : 289 - +
  • [3] Direct summand of serial modules
    Ba, AL-Housseynou
    Diompy, Mankagna Albert
    Diabang, Andre Souleye
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (01): : 410 - 415
  • [4] Some rings for which the cosingular submodule of every module is a direct summand
    Keskin Tutuncu, Derya
    Orhan Ertas, Nil
    Smith, Patrick F.
    Tribak, Rachid
    TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (04) : 649 - 657
  • [5] INDECOMPOSABLE NON UNISERIAL MODULES OF LENGTH THREE
    D'Este, Gabriella
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2020, 27 : 218 - 236
  • [6] RINGS IN WHICH EVERY COMPLEMENT RIGHT IDEAL IS A DIRECT SUMMAND
    CHATTERS, AW
    HAJARNAVIS, CR
    QUARTERLY JOURNAL OF MATHEMATICS, 1977, 28 (109): : 61 - 80
  • [7] ABELIAN GROUPS IN WHICH EVERY NEAT SUBGROUP IS A DIRECT SUMMAND
    LINTON, RC
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (07): : 1044 - &
  • [8] Modules for which every submodule has a supplement that is a direct summand
    Idelhadj, A
    Tribak, R
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2000, 25 (2C): : 179 - 189
  • [9] RINGS WHOSE INDECOMPOSABLE INJECTIVE-MODULES ARE UNISERIAL
    HILL, DA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (04): : 797 - 805
  • [10] A CHARACTERIZATION OF ALGEBRAS FOR WHICH EVERY INDECOMPOSABLE MODULE HAS A CORE
    MELTZER, H
    SKOWRONSKI, A
    JOURNAL OF ALGEBRA, 1986, 99 (01) : 143 - 166