Spermatogenesis is an elaborate process involving both cell division and differentiation, and cell-cell interactions. Defects in any of these processes can result in infertility, and in some cases these can be genetic in cause. Mapping experiments have defined at least three regions of the human Y chromosome that are required for normal spermatogenesis. Two of these contain the genes encoding the RNA binding proteins RBM and DAZ, suggesting that the control of RNA metabolism is likely to be an important control point for human spermatogenesis. A similar analysis in mice has shown that at least two regions of the mouse Y chromosome are essential for spermatogenesis. Both genetic and reverse genetic approaches have been used to identify mouse autosomal genes required for spermatogenesis. These studies have shown that genes in a number of different pathways are essential for normal spermatogenesis, and also provide putative models of human infertility.