Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure

被引:59
|
作者
Wang, Yan-Ran [1 ]
Baratto, Lucia [1 ]
Hawk, K. Elizabeth [1 ]
Theruvath, Ashok J. [1 ]
Pribnow, Allison [2 ]
Thakor, Avnesh S. [1 ]
Gatidis, Sergios [3 ]
Lu, Rong [4 ]
Gummidipundi, Santosh E. [4 ]
Garcia-Diaz, Jordi [1 ]
Rubin, Daniel [1 ,2 ]
Daldrup-Link, Heike E. [1 ,2 ]
机构
[1] Stanford Univ, Mol Imaging Program Stanford, Dept Radiol, 725 Welch Rd, Stanford, CA 94304 USA
[2] Stanford Univ, Lucile Packard Childrens Hosp, Pediat Oncol, Dept Pediat, Stanford, CA 94304 USA
[3] Univ Hosp Tuebingen, Dept Diagnost & Intervent Radiol, Tubingen, Germany
[4] Stanford Univ, Sch Med, Quantitat Sci Unit, Stanford, CA 94304 USA
关键词
Pediatric cancer imaging; PET/MRI; Whole-body PET reconstruction; PET denoising; Deep learning;
D O I
10.1007/s00259-021-05197-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose To generate diagnostic F-18-FDG PET images of pediatric cancer patients from ultra-low-dose F-18-FDG PET input images, using a novel artificial intelligence (AI) algorithm. Methods We used whole-body F-18-FDG-PET/MRI scans of 33 children and young adults with lymphoma (3-30 years) to develop a convolutional neural network (CNN), which combines inputs from simulated 6.25% ultra-low-dose F-18-FDG PET scans and simultaneously acquired MRI scans to produce a standard-dose F-18-FDG PET scan. The image quality of ultra-low-dose PET scans, AI-augmented PET scans, and clinical standard PET scans was evaluated by traditional metrics in computer vision and by expert radiologists and nuclear medicine physicians, using Wilcoxon signed-rank tests and weighted kappa statistics. Results The peak signal-to-noise ratio and structural similarity index were significantly higher, and the normalized root-mean-square error was significantly lower on the AI-reconstructed PET images compared to simulated 6.25% dose images (p < 0.001). Compared to the ground-truth standard-dose PET, SUVmax values of tumors and reference tissues were significantly higher on the simulated 6.25% ultra-low-dose PET scans as a result of image noise. After the CNN augmentation, the SUVmax values were recovered to values similar to the standard-dose PET. Quantitative measures of the readers' diagnostic confidence demonstrated significantly higher agreement between standard clinical scans and AI-reconstructed PET scans (kappa = 0.942) than 6.25% dose scans (kappa = 0.650). Conclusions Our CNN model could generate simulated clinical standard F-18-FDG PET images from ultra-low-dose inputs, while maintaining clinically relevant information in terms of diagnostic accuracy and quantitative SUV measurements.
引用
收藏
页码:2771 / 2781
页数:11
相关论文
共 50 条
  • [1] Artificial intelligence enables whole-body positron emission tomography scans with minimal radiation exposure
    Yan-Ran (Joyce) Wang
    Lucia Baratto
    K. Elizabeth Hawk
    Ashok J. Theruvath
    Allison Pribnow
    Avnesh S. Thakor
    Sergios Gatidis
    Rong Lu
    Santosh E. Gummidipundi
    Jordi Garcia-Diaz
    Daniel Rubin
    Heike E. Daldrup-Link
    European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 2771 - 2781
  • [2] Whole-body positron emission tomography and positron emission tomography/computed tomography in gynecologic oncology
    Kim, EE
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2004, 14 (01) : 12 - 22
  • [3] Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis
    Teirtein, Alvin S.
    Machac, Josef
    Almeida, Orlandino
    Lu, Ping
    Padilla, Maria L.
    Iannuzzi, Michael C.
    CHEST, 2007, 132 (06) : 1949 - 1953
  • [4] SUBOPTIMAL MODULATION OF RADIATION DOSE IN THE COMPUTED TOMOGRAPHY COMPONENT OF WHOLE-BODY POSITRON EMISSION TOMOGRAPHY/COMPUTED TOMOGRAPHY
    Inoue, Yusuke
    Adachi, Mizuho
    Shimizu, Hirokazu
    Nagahara, Kazunori
    Itoh, Hiroyasu
    Takano, Makoto
    Jinguji, Koji
    RADIATION PROTECTION DOSIMETRY, 2020, 192 (01) : 69 - 74
  • [5] Automatic liver detection and standardised uptake value evaluation in whole-body Positron Emission Tomography/Computed Tomography scans
    Chauvie, Stephane
    Bertone, Elisa
    Bergesio, Fabrizio
    Terulla, Alessandra
    Botto, Davide
    Cerello, Piergiorgio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 156 : 47 - 52
  • [6] WHOLE-BODY POSITRON EMISSION TOMOGRAPHY IN BREAST-CANCER
    NITZSCHE, EU
    HOH, CK
    DALBOHM, NM
    GLASPY, JA
    PHELPS, ME
    MOSER, EA
    HAWKINS, RA
    FORTSCHRITTE AUF DEM GEBIETE DER RONTGENSTRAHLEN UND DER NEUEN BILDGEBENDEN VERFAHREN, 1993, 158 (04): : 293 - 298
  • [7] THE ROLE OF POSITRON EMISSION TOMOGRAPHY IN ONCOLOGY AND OTHER WHOLE-BODY APPLICATIONS
    HAWKINS, RA
    HOH, C
    GLASPY, J
    CHOI, Y
    DAHLBOM, M
    REGE, S
    MESSA, C
    NIETSZCHE, E
    HOFFMAN, E
    SEEGER, L
    MADDAHI, J
    PHELPS, ME
    SEMINARS IN NUCLEAR MEDICINE, 1992, 22 (04) : 268 - 284
  • [8] Whole-body tracking of single cells via positron emission tomography
    Jung, Kyung Oh
    Kim, Tae Jin
    Yu, Jung Ho
    Rhee, Siyeon
    Zhao, Wei
    Ha, Byunghang
    Red-Horse, Kristy
    Gambhir, Sanjiv Sam
    Pratx, Guillem
    NATURE BIOMEDICAL ENGINEERING, 2020, 4 (08) : 835 - 844
  • [9] Detection of lymphoma in bone marrow by whole-body positron emission tomography
    Carr, R
    Barrington, SF
    Madan, B
    O'Doherty, MJ
    Saunders, CAB
    van der Walt, J
    Timothy, AR
    BLOOD, 1998, 91 (09) : 3340 - 3346
  • [10] Whole-body tracking of single cells via positron emission tomography
    Kyung Oh Jung
    Tae Jin Kim
    Jung Ho Yu
    Siyeon Rhee
    Wei Zhao
    Byunghang Ha
    Kristy Red-Horse
    Sanjiv Sam Gambhir
    Guillem Pratx
    Nature Biomedical Engineering, 2020, 4 : 835 - 844