Strongly proximal continuity & strong connectedness

被引:2
|
作者
Peters, J. F. [1 ,2 ]
Guadagni, C. [1 ,3 ]
机构
[1] Univ Manitoba, Computat Intelligence Lab, Winnipeg, MB R3T 5V6, Canada
[2] Adsyaman Univ, Fac Arts & Sci, Dept Math, TR-02040 Adzyaman, Turkey
[3] Univ Salerno, Dept Math, Via Giovanni Paolo II 132, I-84084 Salerno, Italy
基金
加拿大自然科学与工程研究理事会;
关键词
Connected; Hypertopology; Strongly proximally continuous; Strong proximal equivalence; Strongly proximally connected; HYPERSPACES;
D O I
10.1016/j.topol.2016.02.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article introduces strongly proximal continuous (s.p.c.) functions, strong proximal equivalence (s.p.e.) and strong connectedness. A main result is that if topological spaces X, Y are endowed with compatible strong proximities and f : X -> Y is a bijective s.p.e., then its extension on the hyperspaces CL(X) and CL(Y), endowed with the related strongly hit and miss hypertopologies, is a homeomorphism. For a topological space endowed with a strongly near proximity, strongly proximal connectedness implies connectedness but not conversely. Conditions required for strongly proximal connectedness are given. Applications of s.p.c. and strongly proximal connectedness are given in terms of strongly proximal descriptive proximity. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 50 条
  • [1] Strong Proximal Continuity and Convergence
    Caserta, Agata
    Lucchetti, Roberto
    Naimpally, Som
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [2] Proximal connectedness
    Bridges, D. S.
    Vita, L. S.
    [J]. FUNDAMENTA INFORMATICAE, 2008, 83 (1-2) : 25 - 34
  • [3] Continuity, change and connectedness
    Scanlan, B
    [J]. AUSTRALIAN VETERINARY JOURNAL, 1996, 74 (01) : 13 - 13
  • [4] Between continuity and set connectedness
    Kohli, J. K.
    Singh, D.
    Kumar, Rajesh
    Aggarwal, Jeetendra
    [J]. APPLIED GENERAL TOPOLOGY, 2010, 11 (01): : 43 - 55
  • [5] STRONG ARCWISE CONNECTEDNESS
    Espinoza, Benjamin
    Gartside, Paul
    Kovan-Bakan, Merve
    Mamatelashvili, Ana
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2017, 43 (02): : 577 - 610
  • [6] Strongly Menger-edge-connectedness and strongly Menger-vertex-connectedness of regular networks
    He, Shengjie
    Hao, Rong-Xia
    Cheng, Eddie
    [J]. THEORETICAL COMPUTER SCIENCE, 2018, 731 : 50 - 67
  • [7] CONTINUITY IN TERMS OF CONNECTEDNESS FOR FUNCTIONS ON THE LINE
    Wojcik, Michal Ryszard
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (04): : 1319 - 1324
  • [8] Characterizing continuity by preserving compactness and connectedness
    Gerlits, J
    Juhász, I
    Soukup, L
    Szentmiklóssy, Z
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2004, 138 (1-3) : 21 - 44
  • [9] Soft strong θ-continuity and soft almost strong θ-continuity
    Abuzaid, Dina
    Al-Ghour, Samer
    [J]. AIMS MATHEMATICS, 2024, 9 (06): : 16687 - 16703
  • [10] Strong Connectedness Modulo an Ideal
    Khani, Mohsen
    Koushesh, Mohammad Reza
    Salamat, Majid
    [J]. BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2023, 49 (03)