Lexicographic optimization in multicriteria discrete problems

被引:0
|
作者
Bondarenko, VA [1 ]
Cloeden, PE
Krasnov, BV
机构
[1] Denidov State Univ, Yaroslavl, Russia
[2] Univ Frankfurt, D-6000 Frankfurt, Germany
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multicriteria optimization on a finite set under a given preference ordering for criteria is investigated. A method of modifying an algorithm for one-criterion optimization on a set to multicriteria optimization on the same set is designed. The operation time of the modified algorithm increases by not more than k times, where Ic is the number of criteria.
引用
收藏
页码:200 / 205
页数:6
相关论文
共 50 条
  • [1] Lexicographic optima in the multicriteria discrete optimization problem
    Emelichev, VA
    Kravtsov, MK
    Yanushkevich, OA
    MATHEMATICAL NOTES, 1995, 58 (3-4) : 928 - 932
  • [2] Computationally efficient approach for solving lexicographic multicriteria optimization problems
    Victor Gergel
    Evgeniy Kozinov
    Konstantin Barkalov
    Optimization Letters, 2021, 15 : 2469 - 2495
  • [3] Computationally efficient approach for solving lexicographic multicriteria optimization problems
    Gergel, Victor
    Kozinov, Evgeniy
    Barkalov, Konstantin
    OPTIMIZATION LETTERS, 2021, 15 (07) : 2469 - 2495
  • [4] Lexicographic ordering: intuitive multicriteria optimization for IMRT
    Jee, Kyung-Wook
    McShan, Daniel L.
    Fraass, Benedick A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (07): : 1845 - 1861
  • [5] Structure of efficient sets in lexicographic quasiconvex multicriteria optimization
    Popovici, N
    OPERATIONS RESEARCH LETTERS, 2006, 34 (02) : 142 - 148
  • [6] Intuitive multicriteria IMRT optimization using a lexicographic approach
    Jee, K
    McShan, D
    Fraass, B
    MEDICAL PHYSICS, 2004, 31 (06) : 1715 - 1715
  • [7] THE STABILITY OF LEXICOGRAPHIC OPTIMIZATION PROBLEMS
    KLEPIKOVA, MG
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1985, 25 (01): : 21 - 29
  • [8] PARALLELIZATION IN LEXICOGRAPHIC DISCRETE OPTIMIZATION ALGORITHMS
    SERGIENKO, IV
    CHERVAK, YY
    GRENDZHA, VI
    CYBERNETICS, 1984, 20 (05): : 720 - 725
  • [9] Lexicographic balanced optimization problems
    Punnen, AP
    Aneja, YP
    OPERATIONS RESEARCH LETTERS, 2004, 32 (01) : 27 - 30
  • [10] Symmetric duality in lexicographic problems of linear optimization
    Russian Acad of Sciences, Ekaterinburg, Russia
    Yugosl J Oper Res, 2 (165-172):