A Mehler-Heine-type formula for Hermite-Sobolev orthogonal polynomials

被引:5
|
作者
Castaño-García, L
Moreno-Balcázar, JJ
机构
[1] Univ Almeria, Dept Estadist & Matemat Aplicada, Almeria 04120, Spain
[2] IES Seritium, Dept Matemat, Cadiz, Spain
[3] Univ Granada, Inst Carlos Fis Teorica & Computac 1, E-18071 Granada, Spain
关键词
Sobolev orthogonal polynomials; asymptotics; Mehler-Heine-type formulas;
D O I
10.1016/S0377-0427(02)00552-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Sobolev inner product such as (f,g)s = integral f(x)g(x) dmu(0)(x) + lambda integral f'(x)g'(x)dmu(1)(x), lambda > 0, with (mu(0),mu(1)) being a symmetrically coherent pair of measures with unbounded support. Denote by Q(n) the orthogonal polynomials with respect to (1) and they are so-called Hermite-Sobolev orthogonal polynomials. We give a Mehler-Heine-type formula for Q(n) when mu(1) is the measure corresponding to Hermite weight on R, that is, dmu(1) = e(-x2) dx and as a consequence an asymptotic property of both the zeros and critical points of Q(n) is obtained, illustrated by numerical examples. Some remarks and numerical experiments are carried out for dmu(0) = e(-x2) dx. An upper bound for \Qn\ on R is also provided in both cases. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [1] Nondiagonal Hermite-Sobolev orthogonal polynomials
    de Morales, MA
    Moreno-Balcázar, JJ
    Pérez, TE
    Piñar, MA
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2000, 61 (1-3) : 257 - 266
  • [2] Δ-Meixner-Sobolev orthogonal polynomials: Mehler-Heine type formula and zeros
    Moreno-Balcazar, Juan J.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 284 : 228 - 234
  • [3] Hermite-Sobolev and closely connected orthogonal polynomials
    Draux, A
    ElHami, C
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 81 (01) : 165 - 179
  • [4] Asymptotic formulae of Mehler-Heine-type for certain classical polyorthogonal polynomials
    Takata, T
    [J]. JOURNAL OF APPROXIMATION THEORY, 2005, 135 (02) : 160 - 175
  • [5] On the Mehler formula for Hermite polynomials
    Viskov, O. V.
    [J]. DOKLADY MATHEMATICS, 2008, 77 (01) : 1 - 4
  • [6] On the Mehler formula for Hermite polynomials
    O. V. Viskov
    [J]. Doklady Mathematics, 2008, 77 : 1 - 4
  • [7] A MEHLER-HEINE FORMULA FOR DISK POLYNOMIALS
    BOUHAIK, M
    GALLARDO, L
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 1991, 2 (01): : 9 - 18
  • [8] Zeros of Sobolev orthogonal polynomials of Hermite type
    de Bruin, MG
    Groenevelt, WGM
    Meijer, HG
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2002, 132 (01) : 135 - 166
  • [9] The Mehler Formula for the Generalized Clifford–Hermite Polynomials
    F. Brackx
    N. de Schepper
    K. I. Kou
    F. Sommen
    [J]. Acta Mathematica Sinica, English Series, 2007, 23 : 697 - 704
  • [10] MEHLER-HEINE ASYMPTOTICS FOR MULTIPLE ORTHOGONAL POLYNOMIALS
    Van Assche, Walter
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (01) : 303 - 314