Sign-changing and nontrivial solutions for a class of Kirchhoff-type problems

被引:9
|
作者
Chen, Bin [1 ]
Ou, Zeng-Qi [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Kirchhoff-type equation; Sign-changing solution; Nehari manifold; Nontrivial solution; Deformation Lemma; EXISTENCE;
D O I
10.1016/j.jmaa.2019.123476
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of sign-changing (nodal) and nontrivial solutions for the nonlinear Kirchhoff-type equation {-(a+b integral(Omega)vertical bar del u vertical bar(2)dx) Delta u = alpha u + beta u(3) in Omega, u=0 on partial derivative Omega, where alpha, beta is an element of R are two real parameters. With the help of nodal Nehari set, we first provide a description of a two-dimensional set in the (alpha,beta) plane, which corresponds to the nonexistence and existence of sign-changing solutions for the above Kirchhoff type equation. And then, we establish the existence result of nontrivial solutions via the minimax methods. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Least energy sign-changing solutions for a class of nonlocal Kirchhoff-type problems
    Cheng, Bitao
    [J]. SPRINGERPLUS, 2016, 5
  • [2] Sign-Changing Solutions for Kirchhoff-Type Problems with Variable Exponent
    Chu, Changmu
    Yu, Ying
    [J]. JOURNAL OF MATHEMATICS, 2023, 2023
  • [3] Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains
    Shuai, Wei
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (04) : 1256 - 1274
  • [4] Least energy sign-changing solutions for discrete Kirchhoff-type problems
    Long, Yuhua
    [J]. APPLIED MATHEMATICS LETTERS, 2024, 150
  • [5] Multiple Sign-Changing Solutions for Kirchhoff-Type Equations
    Li, Xingping
    He, Xiumei
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [6] The sign-changing solutions for a class of Kirchhoff-type problems with critical Sobolev exponents in bounded domains
    Zhu, Xiaoxue
    Fan, Haining
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (05):
  • [7] Multiplicity of sign-changing solutions for Kirchhoff-type equations
    Cassani, Daniele
    Liu, Zhisu
    Tarsi, Cristina
    Zhang, Jianjun
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 186 : 145 - 161
  • [8] Sign-changing solutions for a class of fractional Kirchhoff-type problem with logarithmic nonlinearity
    Yang, Qing
    Bai, Chuanzhi
    [J]. AIMS MATHEMATICS, 2021, 6 (01): : 868 - 881
  • [9] Least energy sign-changing solutions for Kirchhoff-type problems with potential well
    Chen, Xiao-Ping
    Tang, Chun-Lei
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (06)
  • [10] Sign-changing solutions for Kirchhoff-type equations with indefinite nonlinearities
    Zhiying Cui
    Wei Shuai
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2023, 74