Numerical integration of singularities in meshless implementation of local boundary integral equations

被引:63
|
作者
Sladek, V [1 ]
Sladek, J
Atluri, SN
Van Keer, R
机构
[1] Slovak Acad Sci, Inst Construct & Architecture, Bratislava 84220, Slovakia
[2] Univ Calif Los Angeles, Ctr Aerosp Res & Educ, Los Angeles, CA 90024 USA
[3] State Univ Ghent, Dept Math Anal, B-9000 Ghent, Belgium
关键词
Integral Equation; Smooth Function; Special Treatment; Linear Elasticity; Sufficient Accuracy;
D O I
10.1007/s004660050486
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The necessity of a special treatment of the numerical integration of the boundary integrals with singular kernels is revealed for meshless implementation of the local boundary integral equations in linear elasticity. Combining the direct limit approach for Cauchy principal value integrals with an optimal transformation of the integration variable, the singular integrands are recasted into smooth functions, which can be integrated by standard quadratures of the numerical integration with sufficient accuracy. The proposed technique exhibits numerical stability in contrast to the direct integration by standard Gauss quadrature.
引用
收藏
页码:394 / 403
页数:10
相关论文
共 50 条
  • [1] Numerical integration of singularities in meshless implementation of local boundary integral equations
    V. Sladek
    J. Sladek
    S. N. Atluri
    R. Van Keer
    Computational Mechanics, 2000, 25 : 394 - 403
  • [2] Singularities in meshless implementation of the local BIE
    Sladek, V
    Sladek, J
    BOUNDARY ELEMENTS XXII, 2000, 8 : 441 - 450
  • [3] Numerical solution of fredholm integral equations with diagonal and boundary singularities
    Pedas, Arvet
    Vainikko, Gennadi
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 405 - +
  • [4] Meshless implementations of local integral equations
    Sladek, V.
    Sladek, J.
    Zhang, Ch.
    MESH REDUCTION METHODS: BEM/MRM XXXI, 2009, 49 : 71 - +
  • [5] On the Numerical Solution of Logarithmic Boundary Integral Equations Arising in Laplace's Equations Based on the Meshless Local Discrete Collocation Method
    Assari, Pouria
    Dehghan, Mehdi
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (04) : 807 - 837
  • [6] The local boundary integral equation (LBIE) and it's meshless implementation for linear elasticity
    Atluri, SN
    Sladek, J
    Sladek, V
    Zhu, T
    COMPUTATIONAL MECHANICS, 2000, 25 (2-3) : 180 - 198
  • [7] The local boundary integral equation (LBIE) and it's meshless implementation for linear elasticity
    S. N. Atluri
    J. Sladek
    V. Sladek
    T. Zhu
    Computational Mechanics, 2000, 25 : 180 - 198
  • [8] Meshless boundary integral equations with equilibrium satisfaction
    Miers, L. S.
    Telles, J. C. F.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2010, 34 (03) : 259 - 263
  • [9] Numerical integration of functions with boundary singularities
    Monegato, G
    Scuderi, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 112 (1-2) : 201 - 214
  • [10] Numerical integration of functions with boundary singularities
    Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, I-10129 Torino, Italy
    J Comput Appl Math, 1 (201-214):