RATIONAL RINGS RELATED TO WEAKLY TRANSITIVE TORSION-FREE ABELIAN GROUPS

被引:1
|
作者
Meehan, Chris [1 ]
Struengmann, Lutz [2 ]
机构
[1] Dublin Inst Technol, Dept Math Stat & Comp Sci, Dublin 8, Ireland
[2] Univ Duisburg Essen, Dept Math, D-45117 Essen, Germany
关键词
Unit sum number; weak transitivity; rational group; Dirichlet's theorem; separable groups; Euler function;
D O I
10.1142/S0219498809003576
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study subgroups R of the rational numbers Q having the property that for every pair of integers m, n such that gcd(m, n) = 1 and gcd(m, p) = gcd(n, p) = 1 whenever p is in the spectrum of R there is a unit u of R and an element r is an element of R such that un + rm - 1. These rings are closely related to weakly transitive separable groups. We prove that the property is dependent on the spectrum of the rational group in question and that the spectrum may be very complicated.
引用
收藏
页码:723 / 732
页数:10
相关论文
共 50 条
  • [1] On Weakly Transitive Torsion-Free Abelian Groups
    Chekhlov A.R.
    [J]. Journal of Mathematical Sciences, 2021, 259 (4) : 515 - 517
  • [2] Torsion-free weakly transitive abelian groups
    Goldsmith, B
    Strüngmann, L
    [J]. COMMUNICATIONS IN ALGEBRA, 2005, 33 (04) : 1177 - 1191
  • [3] Torsion-free weakly transitive E-Engel Abelian groups
    A. R. Chekhlov
    [J]. Mathematical Notes, 2013, 94 : 583 - 589
  • [4] Torsion-free weakly transitive E-Engel Abelian groups
    Chekhlov, A. R.
    [J]. MATHEMATICAL NOTES, 2013, 94 (3-4) : 583 - 589
  • [5] E-TRANSITIVE TORSION-FREE ABELIAN-GROUPS
    HAUSEN, J
    [J]. JOURNAL OF ALGEBRA, 1987, 107 (01) : 17 - 27
  • [6] Universally fully and Krylov transitive torsion-free abelian groups
    Chekhlov, Andrey R.
    Danchev, Peter V.
    Keef, Patrick W.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 198 (03): : 517 - 534
  • [7] Universally fully and Krylov transitive torsion-free abelian groups
    Andrey R. Chekhlov
    Peter V. Danchev
    Patrick W. Keef
    [J]. Monatshefte für Mathematik, 2022, 198 : 517 - 534
  • [8] Rings on Abelian torsion-free groups of finite rank
    Kompantseva, E. I.
    Tuganbaev, A. A.
    [J]. BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2022, 63 (02): : 267 - 285
  • [9] Rings on Abelian torsion-free groups of finite rank
    E. I. Kompantseva
    A. A. Tuganbaev
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2022, 63 : 267 - 285
  • [10] REMARKS ON ENDOMORPHISM RINGS OF TORSION-FREE ABELIAN-GROUPS
    VANLEEUW.
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 1971, 32 (3-4): : 346 - +