Price estimation of a warrant using polynomial artificial neural networks

被引:0
|
作者
Pérez-Elizalde, G [1 ]
Gómez-Ramírez, E [1 ]
机构
[1] La Salle Univ, Coordinac Invest, Lab Invest & Desarrollo Tecnol Avanzada LIDETEA, Mexico City 06140, DF, Mexico
关键词
warrants; Black & Scholes polynomial; artificial neural network;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Titulos Opcionales (TO's) is the name that the Mexican Stock Market authorities have given to the financial instruments that have been internationally called Warrants. The model proposed by Black & Scholes is one of the most widely used models for valuing these financial instruments. The design of a model of Polynomial Artificial Neural Network (PANN) for estimating the closing price of a TO is shown in this paper. In order to demonstrate the potential estimate of the PANN, several regression and variance analyses are carried out. Firstly, the closing prices and the estimate calculated by the Black & Scholes model are compared, and afterwards the closing prices and the estimate calculated by PANN are compared.
引用
收藏
页码:A908 / A911
页数:4
相关论文
共 50 条
  • [1] Electricity price forecasting using artificial neural networks
    Singhal, Deepak
    Swarup, K. S.
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (03) : 550 - 555
  • [2] Oil price forecast using artificial neural networks
    Pronóstico del precio del petróleo mediante redes neuronales artificiales
    [J]. 1600, Centro de Informacion Tecnologica (25): : 145 - 154
  • [3] Electricity price forecasting using artificial neural networks
    Villada, Fernando
    Cadavid, Diego Raul
    Molina, Juan David
    [J]. REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2008, (44): : 111 - 118
  • [4] Forecasting electricity price volatility using artificial neural networks
    Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600 036, India
    [J]. J Inst Eng India: Electr Eng Div, 2009, JUNE (22-27):
  • [5] Estimation of Deep Neural Networks Capabilities Using Polynomial Approach
    Rozycki, Pawel
    Kolbusz, Janusz
    Korostenskyi, Roman
    Wilamowski, Bogdan M.
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2016, 2016, 9692 : 136 - 147
  • [6] Estimation of daily evaporation using Artificial Neural Networks
    Dogan, Emrah
    Isik, Sabahattin
    Sandalci, Mehmet
    [J]. TEKNIK DERGI, 2007, 18 (02): : 4119 - 4131
  • [7] Wireless User Estimation Using Artificial Neural Networks
    Abinoja, Daniel
    Bedruz, Rhen Anjerome
    Jovellanos, Kevin Loo
    Bandala, Argel
    [J]. 2015 INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY,COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2015, : 475 - +
  • [8] Direction of Arrival Estimation by Using Artificial Neural Networks
    Unlersen, Muhammes Fahri
    Yaldiz, Ercan
    [J]. UKSIM-AMSS 10TH EUROPEAN MODELLING SYMPOSIUM ON COMPUTER MODELLING AND SIMULATION (EMS), 2016, : 242 - 245
  • [9] Solar radiation estimation using artificial neural networks
    Dorvlo, ASS
    Jervase, JA
    Al-Lawati, A
    [J]. APPLIED ENERGY, 2002, 71 (04) : 307 - 319
  • [10] Estimation of daily evaporation using artificial neural networks
    Doǧan, Emrah
    Işik, Sabahattin
    Sandalci, Mehmet
    [J]. Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2007, 18 (02): : 4119 - 4131