Perturbation theory for the eigenvalues of factorised symmetric matrices

被引:12
|
作者
Veselic, K [1 ]
机构
[1] Fern Univ Hagen, Lehrgebiet Math Phys, D-58084 Hagen, Germany
关键词
eigenvalues; relative errors;
D O I
10.1016/S0024-3795(99)00157-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain eigenvalue perturbation results for a factorised Hermitian matrix H = GJG* where J(2) = I and G has full row rank and is perturbed into G + delta G, where delta G is small with respect to G. This complements the earlier results on the easier case of G with full column rank. Applied to square factors G our results help to identify the so-called quasidefinite matrices as a natural class on which the relative perturbation theory for the eigensolution can be formulated in a way completely analogous to the one already known for positive definite matrices. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:85 / 102
页数:18
相关论文
共 50 条
  • [1] APPLICATION OF PERTURBATION-THEORY TO CALCULATION OF EIGENVALUES OF TRIDIAGONAL MATRICES
    POTEMPA, H
    [J]. ANGEWANDTE INFORMATIK, 1976, (01): : 27 - 30
  • [2] RELATIVE PERTURBATION BOUNDS FOR EIGENVALUES OF SYMMETRIC POSITIVE DEFINITE DIAGONALLY DOMINANT MATRICES
    Ye, Qiang
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2009, 31 (01) : 11 - 17
  • [3] The absolute perturbation of the eigenvalues of matrices
    Ren Yanping
    Yang Jin
    Zhang Jinfang
    [J]. PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE OF MATRICES AND OPERATORS (MAO 2012), 2012, : 119 - 122
  • [4] Eigenvalues of Real Symmetric Matrices
    Geck, Meinolf
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (05): : 482 - 483
  • [5] EIGENVALUES OF SYMMETRIC-MATRICES - SYSTEM-THEORY CONDITIONS FOR DISTINCTNESS
    DICKINSON, BW
    STEIGLITZ, K
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (02) : 284 - 285
  • [6] Perturbation of multiple eigenvalues of Hermitian matrices
    Li, Ren-Cang
    Nakatsukasa, Yuji
    Truhar, Ninoslav
    Wang, Wei-guo
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (01) : 202 - 213
  • [7] Perturbation Bounds for Eigenvalues of Commuting Matrices
    Wu, Guoxing
    [J]. ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 312 - 314
  • [8] The perturbation bounds for eigenvalues of normal matrices
    Li, W
    Sun, WW
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (2-3) : 89 - 94
  • [9] Perturbation in eigenvalues of a symmetric tridiagonal matrix
    Jiang, EX
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 91 - 107
  • [10] On the concentration of eigenvalues of random symmetric matrices
    Noga Alon
    Michael Krivelevich
    Van H. Vu
    [J]. Israel Journal of Mathematics, 2002, 131 : 259 - 267