3D SEGMENTATION OF THE LIVER USING FREE-FORM DEFORMATION BASED ON BOOSTING AND DEFORMATION GRADIENTS

被引:0
|
作者
Zhang, Hong [1 ,2 ]
Yang, Lin [2 ,3 ]
Foran, David J. [2 ,3 ]
Nosher, John L. [3 ]
Yim, Peter J. [3 ]
机构
[1] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
[2] UMDNJ RWJMS, Ctr Biomed Imaging & Informat, Piscataway, NJ 08854 USA
[3] UMDNJ RWJMS, Dept Radiol, Piscataway, NJ 08854 USA
关键词
Liver Image Segmentation; CT; Boosting; IMAGE SEGMENTATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a novel automatic 3D hybrid segmentation approach based on free-form deformation. The algorithms incorporate boosting and deformation gradients to achieve reliable liver segmentation of Computed Tomography (CT) scans. A free-form deformable model is deformed under the forces originating from boosting and deformation gradients. The basic idea of the scheme is to combine information from intensity and shape prior knowledge to calculate desired displacements to the liver boundary on vertices of deformable surface. Boosting classifies the 3D image into a binary mask and the edgeflow generates a force field from the mask. The deformable surface deforms iteratively according to the force field. Deformation gradients cast restriction at each deformation step. The deformation converges to a stable status to achieve the final segmentation surface.
引用
收藏
页码:494 / +
页数:2
相关论文
共 50 条
  • [1] Automatic Liver Segmentation Using Statistical Prior Models and Free-form Deformation
    Li, Xuhui
    Huang, Cheng
    Jia, Fucang
    Li, Zongmin
    Fang, Chihua
    Fan, Yingfang
    [J]. MEDICAL COMPUTER VISION: ALGORITHMS FOR BIG DATA, 2014, 8848 : 181 - 188
  • [2] Compensating warpage of 3D printed parts using free-form deformation
    Schmutzler, Christoph
    Zimmermann, Alexander
    Zaeh, Michael F.
    [J]. RESEARCH AND INNOVATION IN MANUFACTURING: KEY ENABLING TECHNOLOGIES FOR THE FACTORIES OF THE FUTURE - PROCEEDINGS OF THE 48TH CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2016, 41 : 1017 - 1022
  • [3] 3D sketching for aesthetic design using fully free-form deformation features
    Cheutet, V
    Catalano, CE
    Pernot, JP
    Falcidieno, B
    Giannini, F
    Leon, JC
    [J]. COMPUTERS & GRAPHICS-UK, 2005, 29 (06): : 916 - 930
  • [4] Optimizing nonimaging free-form optics using free-form deformation
    Wendel, Simon
    Kurz, Julian
    Neumann, Cornelius
    [J]. OPTICAL SYSTEMS DESIGN 2012, 2012, 8550
  • [5] Anamorphic Free-Form Deformation
    Sanchez-Reyes, Javier
    Chacon, Jesus M.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2016, 46 : 30 - 42
  • [6] Free-Form Tetrahedron Deformation
    Kenwright, Ben
    [J]. ADVANCES IN VISUAL COMPUTING, PT II (ISVC 2015), 2015, 9475 : 787 - 796
  • [7] Learning Free-Form Deformation for 3D Face Reconstruction from In-The-Wild Images
    Jung, Harim
    Oh, Myeong-Seok
    Lee, Seong-Whan
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 2737 - 2742
  • [8] DeformNet: Free-Form Deformation Network for 3D Shape Reconstruction from a Single Image
    Kurenkov, Andrey
    Ji, Jingwei
    Garg, Animesh
    Mehta, Viraj
    Gwak, JunYoung
    Choy, Christopher
    Savarese, Silvio
    [J]. 2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 858 - 866
  • [9] 3D facial attractiveness enhancement using free form deformation
    El Rhazi, Manal
    Zarghili, Arsalane
    Majda, Aicha
    Oufkir, Ayat Allah
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (06) : 3497 - 3505
  • [10] Efficient musculoskeletal annotation using free-form deformation
    Fukuda, Norio
    Konda, Shoji
    Umehara, Jun
    Hirashima, Masaya
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):