On the Generalization of the Response Matrix Spectral Nodal Method for Neutral Particle SN Source-Detector Problems in Slab Geometry

被引:4
|
作者
Curbelo, Jesus P. [1 ]
da Silva, Odair P. [2 ]
Barros, Ricardo C. [1 ]
机构
[1] IPRJ UERJ, Inst Politecn, POB 97282, BR-28610974 Nova Friburgo, RJ, Brazil
[2] Inst Fed Fluminense, Itaperuna, Brazil
关键词
Response matrix; discrete ordinates; multigroup transport problem; anisotropic scattering; adjoint problem;
D O I
10.1080/23324309.2021.1889604
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalization of the Response Matrix spectral nodal method is applied to fixed-source discrete ordinates (S-N ) radiative transfer and neutron transport problems in slab geometry. This method is extended to forward and adjoint energy multigroup problems with anisotropic scattering including the upscattering events. We present the numerical methodology which generates S-N solutions absolutely free from spatial truncation errors. To discuss the efficiency of the method, we offer a number of numerical results for two typical test problems.
引用
收藏
页码:67 / 86
页数:20
相关论文
共 15 条
  • [1] A spectral nodal method for the adjoint SN neutral particle transport equations in X, Y-geometry: Application to direct and inverse multigroup source-detector problems
    Curbelo, Jesus P.
    Barros, Ricardo C.
    ANNALS OF NUCLEAR ENERGY, 2021, 150
  • [2] An Adjoint Technique Applied to Slab-Geometry Source-Detector Problems Using the Generalized Spectral Green's Function Nodal Method
    Curbelo, Jesus P.
    da Silva, Odair P.
    Barros, Ricardo C.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2018, 47 (1-3) : 278 - 299
  • [3] A Response Matrix Method for One-Speed Slab-Geometry Discrete Ordinates Adjoint Calculations in Source-Detector Problems
    Mansur, Ralph S.
    Silva, Odair P.
    Moura, Carlos A.
    Barros, Ricardo C.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2016, 45 (06) : 500 - 507
  • [4] Full Linear Response Matrix Spectral Nodal Method for Discrete Ordinates Neutral Particle Transport Problems
    Ortiz, Iram B. Rivas
    Dominguez, Dany Sanchez
    Ambrosio, Paulo Eduardo
    Barros, Ricardo C.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2025,
  • [5] Exponential Response Matrix Spectral Nodal Method for the Discrete Ordinates Neutral Particle Transport Model
    Rivas-Ortiz, Iram B.
    Sanchez-Dominguez, Dany
    Marrero Iglesias, Susana
    Ambrosio, Paulo Eduardo
    SCIENCE AND TECHNOLOGY OF NUCLEAR INSTALLATIONS, 2024, 2024
  • [6] Application of an adjoint technique to one-speed X, Y-geometry source-detector transport problems in the discrete ordinates formulation using a spectral nodal method
    Curbelo, Jesus P.
    da Silva, Odair P.
    Barros, Ricardo C.
    PROGRESS IN NUCLEAR ENERGY, 2018, 108 : 445 - 453
  • [7] The spectral nodal method applied to multigroup SN neutron transport problems in One-Dimensional geometry with Fixed-Source
    Oliva, Amaury Munoz
    Alves Filho, Hermes
    Martins e Silva, Davi Jose
    Garcia Hernandez, Carlos Rafael
    PROGRESS IN NUCLEAR ENERGY, 2018, 105 : 106 - 113
  • [8] Spectral Green's function nodal method for multigroup SN problems with anisotropic scattering in slab-geometry non-multiplying media
    Menezes, Welton A.
    Alves Filho, Hermes
    Barros, Ricardo C.
    ANNALS OF NUCLEAR ENERGY, 2014, 64 : 270 - 275
  • [9] A Response Matrix Method for Slab-Geometry Discrete Ordinates Adjoint Calculations in Energy-Dependent Neutral Particle Transport
    Moraes, Leonardo R. da C.
    Mansur, Ralph S.
    Moura, Carlos A.
    Curbelo, Jesus P.
    Alves Filho, Hermes
    Barros, Ricardo C.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2021, 50 (03) : 159 - 179
  • [10] Analytical reconstruction scheme for the coarse-mesh solution generated by the spectral nodal method for neutral particle discrete ordinates transport model in slab geometry
    Barros, Ricardo C.
    Alves Filho, Hermes
    Platt, Gustavo M.
    Oliveira, Francisco Bruno S.
    Militao, Damiano S.
    ANNALS OF NUCLEAR ENERGY, 2010, 37 (11) : 1461 - 1466