Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems

被引:214
|
作者
Koshiba, M [1 ]
Tsuji, Y [1 ]
机构
[1] Hokkaido Univ, Div Elect & Informat Engn, Sapporo, Hokkaido 0608628, Japan
关键词
curvilinear element; edge element; finite element method; full-wave analysis; guided-wave problem;
D O I
10.1109/50.842091
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A unified approach using curvilinear hybrid edge/nodal elements with triangular shape is, for the first time, described for the study of guided-wave problems. Not only the lowest order (fundamental) but the higher order elements are systematically constructed. The advantage of curvilinear elements lies in the fact that they can model Curved boundaries with more accuracy and lesser number of degrees of freedom than rectilinear elements. The vector basis functions derived here are also applicable to rectilinear cases. To show the validity and usefulness of the present approach, computed results are illustrated for rib waveguides with straight boundaries and circular waveguides with large refractive-index differences.
引用
收藏
页码:737 / 743
页数:7
相关论文
共 50 条
  • [1] A Hybrid SIW and GCPW Guided-Wave Structure Coupler
    Guan, Dong-Fang
    Qian, Zu-Ping
    Zhang, Ying-Song
    Cai, Yang
    [J]. IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2014, 24 (08) : 518 - 520
  • [2] Special issue on recent developments in guided-wave problems - Foreword
    Shigesawa, H
    [J]. IEICE TRANSACTIONS ON ELECTRONICS, 2000, E83C (05) : 673 - 674
  • [3] Spatially resolved edge currents and guided-wave electronic states in graphene
    Allen, M. T.
    Shtanko, O.
    Fulga, I. C.
    Akhmerov, A. R.
    Watanabe, K.
    Taniguchi, T.
    Jarillo-Herrero, P.
    Levitov, L. S.
    Yacoby, A.
    [J]. NATURE PHYSICS, 2016, 12 (02) : 128 - 133
  • [4] Spatially resolved edge currents and guided-wave electronic states in graphene
    Allen M.T.
    Shtanko O.
    Fulga I.C.
    Akhmerov A.R.
    Watanabe K.
    Taniguchi T.
    Jarillo-Herrero P.
    Levitov L.S.
    Yacoby A.
    [J]. Nature Physics, 2016, 12 (2) : 128 - 133
  • [5] APPLICATION OF THE FOURIER-GRID METHOD TO GUIDED-WAVE PROBLEMS
    MUNOWITZ, M
    VEZZETTI, DJ
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1990, 8 (06) : 889 - 893
  • [6] Two dimensional edge-based finite elements for guided and scattered wave problems
    Hansmann, RH
    Davidson, DB
    [J]. PROCEEDINGS OF THE 1998 SOUTH AFRICAN SYMPOSIUM ON COMMUNICATIONS AND SIGNAL PROCESSING: COMSIG '98, 1998, : 415 - 418
  • [7] Hybrid Analytical/Numerical coupled-mode Modeling of guided-wave devices
    Hammer, Manfred
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2007, 25 (09) : 2287 - 2298
  • [8] A TRANSFORMED SYMMETRICAL CONDENSED NODE FOR THE EFFECTIVE TLM ANALYSIS OF GUIDED-WAVE PROBLEMS
    CELUCHMARCYSIAK, M
    GWAREK, WK
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1993, 41 (05) : 820 - 823
  • [9] Integral Equation for Guided-Wave Problems and Application to Magneto-Plasmonics in Graphene
    Chamanara, Nima
    Caloz, Christophe
    [J]. 2013 IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM (APSURSI), 2013, : 732 - 733
  • [10] General Guided-Wave Impedance-Matching Networks with Waveguide-Metamaterial Elements
    Sun, Wangyu
    Qin, Xu
    Wang, Shuyu
    Li, Yue
    [J]. PHYSICAL REVIEW APPLIED, 2022, 18 (03):