New View of the Solar Chromosphere

被引:0
|
作者
Carlsson, Mats [1 ,2 ]
De Pontieu, Bart [1 ,2 ,3 ]
Hansteen, Viggo H. [1 ,2 ]
机构
[1] Univ Oslo, Rosseland Ctr Solar Phys, NO-0315 Oslo, Norway
[2] Univ Oslo, Inst Theoret Astrophys, NO-0315 Oslo, Norway
[3] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA
基金
美国国家航空航天局;
关键词
Sun: atmosphere; Sun: chromosphere; HIGH-RESOLUTION OBSERVATIONS; HORIZONTAL MAGNETIC-FIELDS; FREQUENCY ACOUSTIC-WAVES; TRANSITION REGION; ENERGY-BALANCE; EMERGING FLUX; NUMERICAL SIMULATIONS; HYDROGEN IONIZATION; ATOMIC DATABASE; EMISSION-LINES;
D O I
10.1146/annurev-astro-081817-052044
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The solar chromosphere forms a crucial, yet complex and until recently poorly understood, interface between the solar photosphere and the heliosphere. Advances in high-resolution instrumentation, adaptive optics, image reconstruction techniques, and space-based observatories allow unprecedented high-resolution views of the finely structured and highly dynamic chromosphere. Dramatic progress in numerical computations allows 3D radiative magnetohydrodynamic forward models to take the place of the previous generation of 1D semiempirical atmosphere models. These new models provide deep insight into complex nonlocal thermodynamic equilibrium chromospheric diagnostics and enable physics-based interpretations of observations. This combination of modeling and observations has led to new insights into the role of shock waves, transverse magnetic waves, magnetic reconnection and flux emergence in the chromospheric energy balance, the formation of spicules, the impact of ion-neutral interactions, and the connectivity between chromosphere and transition region. During the next few years, the advent of new instrumentation (integral-field-unit spectropolarimetry) and observatories (ALMA, DKIST), coupled with novel inversion codes and expansion of existing numerical models to deal with ever more complex physical processes (including multifluid approaches), is expected to lead to major new insights into the dominant heating processes in the chromosphere and beyond.
引用
收藏
页码:189 / 226
页数:38
相关论文
共 50 条
  • [1] An overall view of temperature oscillations in the solar chromosphere with ALMA
    Jafarzadeh, S.
    Wedemeyer, S.
    Fleck, B.
    Stangalini, M.
    Jess, D. B.
    Morton, R. J.
    Szydlarski, M.
    Henriques, V. M. J.
    Zhu, X.
    Wiegelmann, T.
    Gomez, J. C. Guevara
    Grant, S. D. T.
    Chen, B.
    Reardon, K.
    White, S. M.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2190):
  • [2] A new diagnostic tool for the solar chromosphere
    Socas-Navarro, H
    Trujillo Bueno, J
    Cobo, BR
    [J]. SOLAR POLARIZATION, 1999, 243 : 263 - +
  • [3] NEW OBSERVATIONS OF SOLAR ULTRAVIOLET CHROMOSPHERE
    BRUNER, EC
    PARKER, RW
    CHIPMAN, E
    STEVENS, R
    [J]. ASTROPHYSICAL JOURNAL, 1973, 182 (01): : L33 - &
  • [4] NEW OBSERVATIONAL RESULTS FOR SOLAR CHROMOSPHERE
    BANOS, GJ
    MACRIS, CJ
    [J]. SOLAR PHYSICS, 1970, 12 (01) : 106 - &
  • [5] NEW LIGHT ON THE HEART OF DARKNESS OF THE SOLAR CHROMOSPHERE
    SOLANKI, SK
    LIVINGSTON, W
    AYRES, T
    [J]. SCIENCE, 1994, 263 (5143) : 64 - 66
  • [6] SOLAR CHROMOSPHERE
    ATHAY, RG
    [J]. SCIENTIFIC AMERICAN, 1962, 206 (02) : 50 - &
  • [7] The solar chromosphere
    不详
    [J]. NATURE, 1932, 130 : 372 - 372
  • [8] On the Rotation of the Solar Chromosphere
    Xu, Jing-Chen
    Gao, Peng-Xin
    Shi, Xiang-Jun
    [J]. ASTROPHYSICAL JOURNAL, 2020, 902 (01):
  • [9] STRUCTURE OF THE SOLAR CHROMOSPHERE
    SUEMOTO, Z
    [J]. SCIENTIA, 1965, 100 (9-10): : 199 - 203
  • [10] Understanding the Solar Chromosphere
    Heinzel, P.
    [J]. EXPLORING THE SOLAR SYSTEM AND THE UNIVERSE, 2008, 1043 : 238 - 244