GPU IMPLEMENTATION OF MAP-MRF FOR MICROSCOPY IMAGERY SEGMENTATION

被引:1
|
作者
Crookes, Danny [1 ]
Miller, Paul [1 ]
Gribben, Hugh [1 ]
Gillan, Charles [1 ]
McCaughey, Damian [1 ]
机构
[1] Queens Univ Belfast, Inst Elect Commun & Informat Technol, Belfast BT3 9DT, Antrim, North Ireland
关键词
Image segmentation; accelerators; UNIT;
D O I
10.1109/ISBI.2009.5193100
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent developments in 3D low-light level CCD (L3CCD) image capture have enabled the study of the dynamics of biomedical bodies within cells. This paper firstly presents an improved algorithm for automatic segmentation of such imagery. It allows for the specific nature of noise in L3CCD data. Secondly, the massive volume of data produced by continuous real time 3D scans requires a high performance computation facility for automatic segmentation and tracking. The paper presents details and results of a GPU implementation of a version of the segmentation algorithm, and shows that on an NVIDIA GeForce 8800GTX, coded in CUDA C, the algorithm runs around 550 times faster than the Matlab version of the algorithm running on a PC.
引用
收藏
页码:526 / 529
页数:4
相关论文
共 50 条
  • [1] MAP-MRF SEGMENTATION OF LUNG TUMOURS IN PET/CT IMAGES
    Gribben, Hugh
    Miller, Paul
    Hanna, Gerard G.
    Carson, Kathryn J.
    Hounsell, Alan R.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 290 - +
  • [2] MAP-MRF BASED LIP SEGMENTATION WITHOUT TRUE SEGMENT NUMBER
    Cheung, Yiu-ming
    Li, Meng
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 769 - 772
  • [3] Segmentation of moving human body parts by a modified MAP-MRF algorithm
    GarciaUgalde, F
    Furness, TA
    SavageCarmona, J
    GaticaPerez, D
    GarciaGarduno, V
    INTERNATIONAL CONFERENCE ON VIRTUAL SYSTEMS AND MULTIMEDIA - VSMM'97, PROCEEDINGS, 1997, : 197 - 205
  • [4] Lip segmentation and tracking under MAP-MRF framework with unknown segment number
    Cheung, Yiu-ming
    Li, Meng
    Cao, Xiaochun
    NEUROCOMPUTING, 2013, 104 : 155 - 169
  • [5] MAP-MRF Approach for Image Denoising
    Aravind, B. N.
    Suresh, K. V.
    2014 INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING AND INFORMATICS (IC3I), 2014, : 923 - 927
  • [6] Segmentation of Dual Modality Brain PET/CT Images Using the MAP-MRF Model
    Xia, Yong
    Wen, Lingfeng
    Eberl, Stefan
    Fulham, Michael
    Feng, Dagan
    2008 IEEE 10TH WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING, VOLS 1 AND 2, 2008, : 107 - 110
  • [7] Using a MAP-MRF Model to Improve 3D Mesh Segmentation Algorithms
    Longjiang, E.
    Waseem, Shadid
    Willis, Andrew
    2013 PROCEEDINGS OF IEEE SOUTHEASTCON, 2013,
  • [8] MAP-MRF Cloud Detection Based on PHD Filtering
    Addesso, Paolo
    Conte, Roberto
    Longo, Maurizio
    Restaino, Rocco
    Vivone, Gemine
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (03) : 919 - 929
  • [9] MAP-MRF CLOUD DETECTION BASED ON PHD FILTERING
    Addesso, Paolo
    Conte, Roberto
    Longo, Maurizio
    Restaino, Rocco
    Vivone, Gemine
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3221 - 3224
  • [10] MAP-MRF filtering of SAR interferometric phase fields
    Ferraiuolo, G
    Poggi, G
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 2534 - 2536