The method of external excitation for solving generalized Sturm-Liouville problems

被引:12
|
作者
Reutskiy, S. Yu. [1 ]
机构
[1] Natl Acad Sci Ukraine, Sci & Technol Ctr Magnetism Tech Objects, UA-61106 Kharkov, Ukraine
关键词
Eigenvalue problems; Sturm-Liouville problems; Numerical solution; Generalized problems; Parameter dependent boundary conditions; FREE-VIBRATIONS; EIGENVALUES;
D O I
10.1016/j.cam.2009.10.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new numerical technique for solving the generalized Sturm-Liouville problem d(2)w/dx(2) + q(x, lambda)w = 0, b(t) [w(0), lambda] = b(r) [w(1), lambda] = 0 is presented. In particular, we consider the problems when the coefficient q(x, lambda) or the boundary conditions depend on the spectral parameter lambda in an arbitrary nonlinear manner. The method presented is based on mathematically modelling the physical response of a system to excitation over a range of frequencies. The response amplitudes are then used to determine the eigenvalues. The results of the numerical experiments justifying the method are presented. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2374 / 2386
页数:13
相关论文
共 50 条
  • [1] A direct method for solving inverse Sturm-Liouville problems*
    Kravchenko, Vladislav V.
    Torba, Sergii M.
    [J]. INVERSE PROBLEMS, 2021, 37 (01)
  • [2] A Reliable Method for Solving Fractional Sturm-Liouville Problems
    Khashshan, M. M.
    Syam, Muhammed I.
    Al Mokhmari, Ahlam
    [J]. MATHEMATICS, 2018, 6 (10)
  • [3] An efficient method for solving fractional Sturm-Liouville problems
    Al-Mdallal, Qasem M.
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 183 - 189
  • [4] A Meshless Method for Nonlinear, Singular and Generalized Sturm-Liouville Problems
    Reutskiy, S. Yu.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2008, 34 (03): : 227 - 252
  • [5] A meshless method for nonlinear, singular and generalized Sturm-Liouville problems
    Science and Technology Center of Magnetism of Technical Objects, National Academy of Science of Ukraine, Industrialnaya St.,19, 61106, Kharkov, Ukraine
    [J]. CMES - Computer Modeling in Engineering and Sciences, 2008, 34 (03): : 227 - 252
  • [6] An improvement for Chebyshev collocation method in solving certain Sturm-Liouville problems
    Yuan, Quan
    He, Zhiqing
    Leng, Huinan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (02) : 440 - 447
  • [7] An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems
    Kashkari, Bothayna S. H.
    Syam, Muhammed, I
    [J]. RESULTS IN PHYSICS, 2018, 9 : 560 - 569
  • [8] A new application of the homotopy analysis method: Solving the Sturm-Liouville problems
    Abbasbandy, S.
    Shirzadi, A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (01) : 112 - 126
  • [9] On a method for solving the inverse Sturm-Liouville problem
    Kravchenko, Vladislav V.
    [J]. JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2019, 27 (03): : 401 - 407
  • [10] Generalized Finite Difference Method for Solving Two-Interval Sturm-Liouville Problems with Jump Conditions
    Cavusoglu, Semih
    Mukhtarov, Oktay Sh.
    [J]. FILOMAT, 2022, 36 (13) : 4505 - 4513