Asymptotic normality with small relative errors of posterior probabilities of half-spaces

被引:0
|
作者
Dudley, RM
Haughton, D
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Bentley Coll, Dept Math Sci, Waltham, MA 02154 USA
来源
ANNALS OF STATISTICS | 2002年 / 30卷 / 05期
关键词
Bernstein-von Mises theorem; gamma tail probabilities; intermediate deviations; Jeffreys prior; Mills' ratio;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let Theta be a parameter space included in a finite-dimensional Euclidean space and let A be a half-space. Suppose that the maximum likelihood estimate theta(n) of theta is not in A (otherwise, replace A by its complement) and let A be the maximum log likelihood (at theta(n)) minus the maximum log likelihood over the boundary partial derivativeA. It is shown that under some conditions, uniformly over all half-spaces A, either the posterior probability of A is asymptotic to Phi (-root2Delta) where Phi is the standard normal distribution function, or both the posterior probability and its approximant go to 0 exponentially in n. Sharper approximations depending. on the prior are also defined.
引用
收藏
页码:1311 / 1344
页数:34
相关论文
共 9 条