Strain hardening anisotropy of aluminium alloys during complex loading: Strain reversal effects

被引:1
|
作者
Gracio, JJ [1 ]
Rauch, EF
Barlat, F
Lopes, AB
Duarte, JF
机构
[1] Univ Aveiro, Ctr Mech Technol & Automat, Dept Mech Engn, PT-3810 Aveiro, Portugal
[2] ENSPG, INPG, Genie Phys & Mecan Mat, CNRS,ESA 5010, FR-38402 St Martin Dheres, France
[3] Alcoa Inc, Alcoa Tech Ctr, Alcoa Ctr, PA 15069 USA
[4] Univ Aveiro, Dept Ceram & Glass, PT-3810 Aveiro, Portugal
[5] Univ Porto, Dept Mech Engn, PT-4099 Oporto, Portugal
来源
ADVANCED MATERIALS FORUM I | 2002年 / 230-2卷
关键词
aluminium alloy; Bauschinger effect; complex strain paths; plastic anisotropy; sequential loading;
D O I
10.4028/www.scientific.net/KEM.230-232.521
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Two aluminium alloys were prestrained in tension and subjected to a subsequent deformation in simple shear. The shear direction is such that the strain tensor is nearly reversed. In case of the AA1050-O, the stress-strain curves exhibit a behaviour typical of Bauschinger type tests that consists in a transient attenuation of the hardening rate. Transmission electron microscopy observations demonstrate that the transient is related to the dissolution of pre-existing dislocations walls. Due to its high precipitate content, the substructure in the Al-Mg-Si alloy (6022-T4) is composed of a high density of individual dislocations homogeneously distributed. The dislocation arrangement is apparently unaffected during reloading. Consequently, monotonous hardening is recorded at reloading for this alloy.
引用
收藏
页码:521 / 524
页数:4
相关论文
共 50 条
  • [1] Predicting Strain Hardening and Anisotropy of Metals and Alloys.
    Kazakevich, G.S.
    Izvestiya AN SSSR: Metally, 1977, (06): : 131 - 135
  • [2] FORECASTING THE STRAIN-HARDENING AND ANISOTROPY OF METALS AND ALLOYS
    KAZAKEVICH, GS
    RUSSIAN METALLURGY, 1977, (06): : 106 - 109
  • [3] EFFECTS OF STRAIN-RATE HISTORY ON STRAIN HARDENING CURVE OF ALUMINIUM
    KLEPACZKO, J
    ARCHIWUM MECHANIKI STOSOWANEJ, 1967, 19 (02): : 211 - +
  • [4] The influence of heat treatment on strain hardening and strain-rate sensitivity of aluminium alloys for aerospace
    Piris, NM
    Badía, JM
    Antoranz, JM
    Tarín, P
    REVISTA DE METALURGIA, 2004, 40 (04) : 288 - 293
  • [5] Effects of aluminum content and strain rate on strain hardening behavior of cast magnesium alloys during compression
    Tahreen, N.
    Chen, D. L.
    Nouri, M.
    Li, D. Y.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 594 : 235 - 245
  • [6] Hardening behavior and structural evolution upon strain reversal of aluminum alloys
    Rauch, EF
    Gracio, JJ
    Barlat, F
    Lopes, AB
    Duarte, JF
    SCRIPTA MATERIALIA, 2002, 46 (12) : 881 - 886
  • [7] FEATURES OF STRAIN HARDENING OF HETEROGENEOUS ALUMINIUM ALLOYS TO ENHANCE THE FATIGUE DURABILITY
    Zasimchuk, O. E.
    Chausov, M. G.
    Mordyuk, B. M.
    Baskova, O. I.
    Zasimchuk, V. I.
    Turchak, T. V.
    Gatsenko, O. S.
    USPEKHI FIZIKI METALLOV-PROGRESS IN PHYSICS OF METALS, 2021, 22 (04): : 619 - 642
  • [8] STRAIN RATE SENSITIVITY, WORK HARDENING RATE AND STRAIN PRIOR TO LOCALIZED NECKING DURING TENSILE TESTING IN SOME ALUMINIUM ALLOYS.
    Hero, H.
    Sheet Metal Industries, 1979, 56 (06): : 545 - 555
  • [9] Predicting the strain hardening characteristics of ageing alloys under combined loading
    Nizhnik, S. B.
    Dmitrieva, E. A.
    INTERNATIONAL APPLIED MECHANICS, 2007, 43 (06) : 683 - 689
  • [10] Estimation of the Strain Rate Hardening of Aluminium Using an Inverse Method and Blast Loading
    Louar M.A.
    Belkassem B.
    Ousji H.
    Spranghers K.
    Pyl L.
    Vantomme J.
    Journal of Dynamic Behavior of Materials, 2017, 3 (3) : 347 - 361