Simple and cost effective fabrication of 3D porous core-shell Ni nanochains@NiFe layered double hydroxide nanosheet bifunctional electrocatalysts for overall water splitting

被引:146
|
作者
Cai, Zhengyang [1 ]
Bu, Xiuming [2 ]
Wang, Ping [1 ,3 ]
Su, Wenqiang [1 ]
Wei, Renjie [2 ]
Ho, Johnny C. [2 ]
Yang, Junhe [1 ,3 ]
Wang, Xianying [1 ,3 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat Sci & Technol, Jungong Rd 516, Shanghai 200093, Peoples R China
[2] City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, 83 Tat Ghee Ave, Hong Kong, Peoples R China
[3] Shanghai Innovat Inst Mat, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
EVOLUTION REACTION; ENERGY-CONVERSION; EFFICIENT; OXYGEN; NICKEL; CATALYST; LDH; PHOSPHIDE; FOAM;
D O I
10.1039/c9ta07282a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Highly efficient, durable and cost-effective electrocatalysts are highly desired for overall water splitting (OWS). Herein, we report the easy fabrication of 3D porous core-shell Ni nanochains@NiFe layered double hydroxide (LDH) nanosheets with extraordinary oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and OWS performance. In specific, a simple magnetic field-assisted method is used for the in situ growth of Ni nanochain cores with large surface areas, allowing the subsequent vertical growth of few-layered NiFe LDH nanosheets to form densely packed shells. Benefiting from the meticulously designed nanoarchitecture, the electrocatalyst possesses rich exposed active sites, plentiful charge transfer channels and high porosity for the release of gas bubbles. The OER performance and durability of the electrocatalyst are far better than those of both commercial RuO2 and IrO2, while its HER performance is competitive with the performance of the benchmark Pt/C electrode in alkaline electrolytes. When these catalysts are further employed as anode and cathode electrodes, small cell voltages of 1.53 and 1.78 V can be achieved at current densities of 10 and 100 mA cm(-2) for a long-term OWS reaction. Towards the commercial use, we design an electrolytic overall-water-splitting cell pack, which demonstrates a linear relationship between the numbers of packing cells and the increase of current density under a given voltage.
引用
收藏
页码:21722 / 21729
页数:8
相关论文
共 50 条
  • [1] Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting
    Yu, Luo
    Zhou, Haiqing
    Sun, Jingying
    Qin, Fan
    Luo, Dan
    Xie, Lixin
    Yu, Fang
    Bao, Jiming
    Li, Yong
    Yu, Ying
    Chen, Shuo
    Ren, Zhifeng
    NANO ENERGY, 2017, 41 : 327 - 336
  • [2] Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting
    Yu, Luo
    Zhou, Haiqing
    Sun, Jingying
    Qin, Fan
    Yu, Fang
    Bao, Jiming
    Yu, Ying
    Chen, Shuo
    Ren, Zhifeng
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (08) : 1820 - 1827
  • [3] Bifunctional NiFe layered double hydroxide@Ni3S2 heterostructure as efficient electrocatalyst for overall water splitting
    Liang, Xinqi
    Li, Yahao
    Fan, He
    Deng, Shengjue
    Zhao, Xingyu
    Chen, Minghua
    Pan, Guoxiang
    Xiong, Qinqin
    Xia, Xinhui
    NANOTECHNOLOGY, 2019, 30 (48)
  • [4] Nickel-cobalt-layered double hydroxide nanosheet arrays on Ni foam as a bifunctional electrocatalyst for overall water splitting
    Liu, Wenjun
    Bao, Jian
    Guan, Meili
    Zhao, Yan
    Lian, Jiabiao
    Qiu, Jingxia
    Xu, Li
    Huang, Yunpeng
    Qian, Jing
    Li, Huaming
    DALTON TRANSACTIONS, 2017, 46 (26) : 8372 - 8376
  • [5] 3-D CdS@NiCo layered double hydroxide core-shell photoelectrocatalyst used for efficient overall water splitting
    Pirkarami, Azam
    Rasouli, Sousan
    Ghasemi, Ebrahim
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 241 : 28 - 40
  • [6] Self-supported Ni3Se2@NiFe layered double hydroxide bifunctional electrocatalyst for overall water splitting
    Hu, Jin
    Zhu, Shengli
    Liang, Yanqin
    Wu, Shuilin
    Li, Zhaoyang
    Luo, Shuiyuan
    Cui, Zhenduo
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 587 : 79 - 89
  • [7] 3D core-shell structured NiFe layered double hydroxide with NiCo2O4 as an efficient electrocatalysts for oxygen evolution reaction
    Wang, Shenggao
    Li, Jiahao
    Fang, Han
    Li, Boyang
    Wang, Geming
    Gao, Yuan
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2022, 166
  • [8] Highly efficient Ni nanotube arrays and Ni nanotube arrays coupled with NiFe layered-double-hydroxide electrocatalysts for overall water splitting
    Li, Dandan
    Hao, Genyan
    Guo, Wenjun
    Liu, Guang
    Li, Jinping
    Zhao, Qiang
    JOURNAL OF POWER SOURCES, 2020, 448
  • [9] CoMoP/NiFe-Layered Double-Hydroxide Hierarchical Nanosheet Arrays Standing on Ni Foam for Efficient Overall Water Splitting
    Mai, Wanshan
    Cui, Qian
    Zhang, Ziqiong
    Zhang, Kaikai
    Li, Guoqiang
    Tian, Lihong
    Hu, Wei
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (08): : 8075 - 8085
  • [10] Improved Electrocatalytic Performance in Overall Water Splitting with Rational Design of Hierarchical Co3O4@NiFe Layered Double Hydroxide Core-Shell Nanostructure
    Wang, Shanpeng
    Wu, Jian
    Yin, Junwen
    Hu, Qi
    Geng, Dongsheng
    Liu, Li-Min
    CHEMELECTROCHEM, 2018, 5 (10): : 1357 - 1363