Object DGCNN: 3D Object Detection using Dynamic Graphs

被引:0
|
作者
Wang, Yue [1 ]
Solomon, Justin [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D object detection often involves complicated training and testing pipelines, which require substantial domain knowledge about individual datasets. Inspired by recent non-maximum suppression-free 2D object detection models, we propose a 3D object detection architecture on point clouds. Our method models 3D object detection as message passing on a dynamic graph, generalizing the DGCNN framework to predict a set of objects. In our construction, we remove the necessity of post-processing via object confidence aggregation or non-maximum suppression. To facilitate object detection from sparse point clouds, we also propose a set-to-set distillation approach customized to 3D detection. This approach aligns the outputs of the teacher model and the student model in a permutation-invariant fashion, significantly simplifying knowledge distillation for the 3D detection task. Our method achieves state-of-the-art performance on autonomous driving benchmarks. We also provide abundant analysis of the detection model and distillation framework.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Dynamic graph transformer for 3D object detection
    Ren, Siyuan
    Pan, Xiao
    Zhao, Wenjie
    Nie, Binling
    Han, Bo
    KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [2] Object Detection using Categorised 3D Edges
    Kiforenko, Lilita
    Buch, Anders Glent
    Bodenhagen, Leon
    Kruger, Norbert
    SEVENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2014), 2015, 9445
  • [3] 3D object detection using improved PointRCNN
    Fukitani K.
    Shin I.
    Lu H.
    Yang S.
    Kamiya T.
    Nakatoh Y.
    Serikawa S.
    Cognitive Robotics, 2022, 2 : 242 - 254
  • [4] Object detection using a cascade of 3D models
    Pong, HK
    Cham, TJ
    COMPUTER VISION - ACCV 2006, PT II, 2006, 3852 : 284 - 293
  • [5] 3D Object Proposals for Accurate Object Class Detection
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhu, Yukun
    Berneshawi, Andrew
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [6] 3D Object Detection with Pointformer
    Pan, Xuran
    Xia, Zhuofan
    Song, Shiji
    Li, Li Erran
    Huang, Gao
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 7459 - 7468
  • [7] A survey of 3D object detection
    Wei Liang
    Pengfei Xu
    Ling Guo
    Heng Bai
    Yang Zhou
    Feng Chen
    Multimedia Tools and Applications, 2021, 80 : 29617 - 29641
  • [8] Faster 3D Object Detection in RGB-D Image Using 3D Selective Search and Object Pruning
    Liu, Jiang
    Chen, Hongliang
    Li, Jianxun
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 4862 - 4866
  • [9] A survey of 3D object detection
    Liang, Wei
    Xu, Pengfei
    Guo, Ling
    Bai, Heng
    Zhou, Yang
    Chen, Feng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (19) : 29617 - 29641
  • [10] 3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection
    Chen, Xiaozhi
    Kundu, Kaustav
    Zhu, Yukun
    Ma, Huimin
    Fidler, Sanja
    Urtasun, Raquel
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (05) : 1259 - 1272