P-matrix completions under weak symmetry assumptions

被引:12
|
作者
Fallat, SM [1 ]
Johnson, CR
Torregrosa, JR
Urbano, AM
机构
[1] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[3] Univ Polytecn Valencia, Dept Appl Math, Valencia 46013, Spain
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
P-matrix; matrix completion; graph; combinatorial symmetry;
D O I
10.1016/S0024-3795(00)00088-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An n-by-n matrix is called a Iir-matrix if it is one of (weakly) sign-symmetric, positive, nonnegative P-matrix, (weakly) sign-symmetric, positive, nonnegative P(0,1)-matrix, or Fischer, or Koteljanskii matrix. In this paper, we are interested in Pi-matrix completion problems, that is, when a partial Pi-matrix has a Pi-matrix completion. Here, we prove that a combinatorially symmetric partial positive P-matrix has a positive P-matrix completion if the graph of its specified entries is an Pi-cycle. In general, a combinatorially symmetric partial Pi-matrix has a Pi-matrix completion if the graph of its specified entries is a 1-chordal graph. This condition is also necessary for (weakly) sign-symmetric P(0-) or P(0,1)-matrices. (C) 2000 Elsevier Science Inc. Ail rights reserved. AMS classification: 15A48.
引用
收藏
页码:73 / 91
页数:19
相关论文
共 50 条
  • [1] Completions of P-matrix patterns
    DeAlba, LM
    Hogben, L
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 319 (1-3) : 83 - 102
  • [2] LOCALIZATION OF THE SPECTRA OF P-MATRIX AND P-MATRIX
    HERSHKOWITZ, D
    BERMAN, A
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 52-3 (JUL) : 383 - 397
  • [3] P-matrix powers
    Mondal, Samir
    Sivakumar, K. C.
    Tsatsomeros, M. J.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 355 - 366
  • [4] The Lucas p-matrix
    Kuhapatanakul, Kantaphon
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2015, 46 (08) : 1228 - 1234
  • [5] Criterion of P-Matrix
    Zhao, Xue
    Pang, Mingxian
    [J]. PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, : 318 - 320
  • [6] EXAMINING THE P-MATRIX
    CRAWFORD, GA
    MILLER, GA
    [J]. PHYSICAL REVIEW D, 1987, 35 (05): : 1707 - 1712
  • [7] Criterion of P-matrix
    Zhao, Xue
    Pang, Mingxian
    [J]. ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 461 - 463
  • [8] A linear complementarity problem with a P-matrix
    Schäfer, U
    [J]. SIAM REVIEW, 2004, 46 (02) : 189 - 201
  • [9] P-MATRIX METHODS IN HADRONIC SCATTERING
    BAKKER, BLG
    MULDERS, PJ
    [J]. ADVANCES IN NUCLEAR PHYSICS, 1986, 17 : 1 - 45
  • [10] Good hidden P-matrix sandwiches
    Morris, Walter D.
    Namiki, Makoto
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) : 325 - 341