CLASSIFICATION OF LEFT INVARIANT METRICS ON 4-DIMENSIONAL SOLVABLE LIE GROUPS

被引:3
|
作者
Sukilovic, Tijana [1 ]
机构
[1] Univ Belgrade, Fac Math, Belgrade, Serbia
关键词
solvable Lie groups; left invariant metrics; metric algebra; Ricci-parallel metrics; Einstein spaces; NONHOLONOMIC RIEMANNIAN STRUCTURES;
D O I
10.2298/TAM200826014S
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper the complete classification of left invariant metrics of arbitrary signature on solvable Lie groups is given. By identifying the Lie algebra with the algebra of left invariant vector fields on the corresponding Lie group G, the inner product <center dot , center dot > on g = Lie G extends uniquely to a left invariant metric.. on the Lie group. Therefore, the classification problem is reduced to the problem of classification of pairs (g, <center dot , center dot >) known as the metric Lie algebras. Although two metric algebras may be isometric even if the corresponding Lie algebras are non-isomorphic, this paper will show that in the 4-dimensional solvable case isometric means isomorphic. Finally, the curvature properties of the obtained metric algebras are considered and, as a corollary, the classification of flat, locally symmetric, Ricciflat, Ricci-parallel and Einstein metrics is also given.
引用
收藏
页码:181 / 204
页数:24
相关论文
共 50 条
  • [1] LEFT INVARIANT (α, β)-METRICS ON 4-DIMENSIONAL LIE GROUPS
    Atashafrouz, Mona
    Najafi, Behzad
    Piscoran, Laurian-Ioan
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (03): : 727 - 740
  • [2] INVARIANT COMPLEX STRUCTURES ON 4-DIMENSIONAL SOLVABLE REAL LIE-GROUPS
    SNOW, JE
    MANUSCRIPTA MATHEMATICA, 1990, 66 (04) : 397 - 412
  • [3] Examples of invariant semi-Riemannian metrics on 4-dimensional lie groups
    Koji Matsumoto
    Gabriel Teodor Pripoae
    Rendiconti del Circolo Matematico di Palermo, 2003, 52 (3) : 351 - 366
  • [4] Metrics on 4-dimensional unimodular Lie groups
    Scott Van Thuong
    Annals of Global Analysis and Geometry, 2017, 51 : 109 - 128
  • [5] Metrics on 4-dimensional unimodular Lie groups
    Van Thuong, Scott
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2017, 51 (02) : 109 - 128
  • [6] Homogeneous Geodesics of 4-dimensional Solvable Lie Groups
    Inoguchi, Jun-ichi
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (01): : 106 - 136
  • [7] Left invariant pseudo-Riemannian metrics on solvable Lie groups
    Xu, Na
    Chen, Zhiqi
    Tan, Ju
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 247 - +
  • [9] ON LEFT INVARIANT (α, β)-METRICS ON SOME LIE GROUPS
    Deng, Shaoqiang
    Hosseini, Masoumeh
    Liu, Huaifu
    Moghaddam, Hamid Reza Salimi
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1071 - 1088
  • [10] Left invariant degenerate metrics on Lie groups
    Oussalah M.
    Bekkara E.
    Journal of Geometry, 2017, 108 (1) : 171 - 184