Vertex coloring of comparability +ke and -ke graphs

被引:0
|
作者
Takenaga, Yasuhiko [1 ]
Higashide, Kenichi [1 ]
机构
[1] Univ Electrocommun, Chofu, Tokyo 182, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
F + ke and T - ke graphs are classes of graphs close to graphs in a graph class T. They are the classes of graphs obtained by adding or deleting at most k edges from a graph in T. In this paper, we consider vertex coloring of comparability+ke and comparability-ke graphs. We show that for comparability+ke graphs, vertex coloring is solved in polynomial time for k = 1 and NP-complete for k >= 2. We also show that vertex coloring of comparability-1e graphs is solved in polynomial time.
引用
收藏
页码:102 / +
页数:2
相关论文
共 50 条
  • [1] On the square coloring of comparability graphs
    Yetim, Mehmet Akif
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (04)
  • [2] tehnološke zabilješke
    Mason, Peter R.
    Kemija u industriji/Journal of Chemists and Chemical Engineers, 2017, 66 (1-2): : 83 - 84
  • [3] Incident Vertex π-Coloring of Graphs
    Thakare, Sunil B.
    Bhapkar, Haribhau R.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (02): : 591 - 604
  • [4] Tehnološke zabilješke
    Ražem, Dušan
    Kemija u industriji/Journal of Chemists and Chemical Engineers, 2017, 66 (9-10): : 544 - 545
  • [5] Tehnološke zabilješke
    Kemija u industriji/Journal of Chemists and Chemical Engineers, 2009, 58 (02): : 89 - 90
  • [6] Tehnološke zabilješke
    1600, Croatian Society of Chemical Engineers (66): : 3 - 4
  • [7] Tehnološke zabilješke
    Razem, Dušan
    Kemija u industriji/Journal of Chemists and Chemical Engineers, 2014, 63 (7-8): : 283 - 287
  • [8] Tehnološke zabilješke
    Ražem, Dušan
    Kemija u industriji/Journal of Chemists and Chemical Engineers, 2016, 65 (7-8): : 416 - 419
  • [9] Tehnološke zabilješke
    Ražem, Dušan
    Kemija u industriji/Journal of Chemists and Chemical Engineers, 2017, 66 (11-12):
  • [10] APPLICATIONS OF EDGE COLORING OF MULTIGRAPHS TO VERTEX COLORING OF GRAPHS
    KIERSTEAD, HA
    DISCRETE MATHEMATICS, 1989, 74 (1-2) : 117 - 124