A characterization of distinguished Frechet spaces

被引:3
|
作者
Ferrando, J. C.
Kakol, J. [1 ]
Lopez Pellicer, M.
机构
[1] Adam Mickiewicz Univ Poznan, Fac Math & Informat, PL-61614 Poznan, Poland
[2] Univ Miguel Hernandez, Ctr Invest Operat, E-03202 Alicante, Spain
[3] Univ Politecn Valencia, Inst Matemat Pura & Aplicada, E-46022 Valencia, Spain
[4] Univ Politecn Valencia, Dept Matemat Aplicada, E-46022 Valencia, Spain
关键词
(DF)-space; countable tightness; distinguished space;
D O I
10.1002/mana.200410454
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bierstedt and Bonet proved in 1988 that if a metrizable locally convex space E satisfies the Heinrich's density condition, then every bounded set in the strong dual (E', beta(E', E)) of E is metrizable; consequently E is distinguished, i.e. (E', beta(E', E)) is quasibarrelled. However there are examples of distinguished Frechet spaces whose strong dual contains nonmetrizable bounded sets. We prove that a metrizable locally convex space E is distinguished iff every bounded set in the strong dual (E', beta(E', E)) has countable tightness, i.e. for every bounded set A in (E', beta(E', E)) and every x in the closure of A there exists a countable subset B of A whose closure contains x. This extends also a classical result of Grothendieck. (C) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:1783 / 1786
页数:4
相关论文
共 50 条