Probing electrical degradation of cathode materials for lithium-ion batteries with nanoscale resolution

被引:42
|
作者
Park, Seong Yong [1 ]
Baek, Woon Joong [1 ]
Lee, Seung Yeon [1 ]
Seo, Jin Ah [2 ]
Kang, Yoon-Sok [2 ]
Koh, Meiten [2 ]
Kim, Seong Heon [1 ]
机构
[1] Samsung Adv Inst Technol, Analyt Engn Grp, 130 Samsung Ro, Suwon 443803, Gyeonggi Do, South Korea
[2] Samsung Adv Inst Technol, Energy Lab, 130 Samsung Ro, Suwon 443803, Gyeonggi Do, South Korea
关键词
Lithium-ion battery; LiNixCoyAlzO2; Microcrack; SSRM; LAYERED COMPOSITE CATHODE; ELECTRODE MATERIALS; ORIGIN; MICROSCOPY; STRESS; ISSUES;
D O I
10.1016/j.nanoen.2018.04.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Understanding the degradation mechanism of Lithium-ion batteries (LIBs) is critical in developing high-performance LIBs, and the investigation of their electrical conductivity evolution during cycling can lead to a better understanding of the degradation mechanism of the cathode materials for Li-ion batteries (LIBs). Here, we studied the evolution of the electrical conductivity of LiNi0.8Co0.15Al0.05O2 (NCA) particles for LIB cathodes using scanning spreading resistance microscopy (SSRM). After 300 charge/discharge cycles, stepwise-increasing resistance distributions toward the centers of the secondary particles are observed. These distributions correspond to the degenerated granular structures of the secondary particles caused by the formation of microcracks. In addition, the correlation between the electrical conductivity and microstructure of the NCA cathode is established to explain the observed decay of the NCA discharge capacity. Our findings can provide an insight into the debatable degradation mechanism of LIB cathode materials such as NCA and NMC (LiNixMnyCozO2, x + y + z = 1).
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Nanoscale Materials for Lithium-Ion Batteries
    Charles R. Sides
    Naichao Li
    Charles J. Patrissi
    Bruno Scrosati
    Charles R. Martin
    [J]. MRS Bulletin, 2002, 27 : 604 - 607
  • [2] Nanoscale materials for lithium-ion batteries
    Sides, CR
    Li, NC
    Patrissi, CJ
    Scrosati, B
    Martin, CR
    [J]. MRS BULLETIN, 2002, 27 (08) : 604 - 607
  • [3] Nanoscale Electrical Degradation of Silicon-Carbon Composite Anode Materials for Lithium-Ion Batteries
    Kim, Seong Heon
    Kim, Yong Su
    Baek, Woon Joong
    Heo, Sung
    Yun, Dong-Jin
    Han, Sungsoo
    Jung, Heechul
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (29) : 24549 - 24553
  • [4] Nanoprocess and nanoscale surface functionalization on cathode materials for advanced lithium-ion batteries
    Alaboina, Pankaj Kumar
    Uddin, Md-Jamal
    Cho, Sung-Jin
    [J]. NANOSCALE, 2017, 9 (41) : 15736 - 15752
  • [5] Advanced cathode materials for lithium-ion batteries
    Zonghai Chen
    Dong-Ju Lee
    Yang-Kook Sun
    Khalil Amine
    [J]. MRS Bulletin, 2011, 36 : 498 - 505
  • [6] Advanced cathode materials for lithium-ion batteries
    Chen, Zonghai
    Lee, Dong-Ju
    Sun, Yang-Kook
    Amine, Khalil
    [J]. MRS BULLETIN, 2011, 36 (07) : 498 - 505
  • [7] Review of Graphene in Cathode Materials for Lithium-Ion Batteries
    Chen, Xueye
    Tian, Yue
    [J]. ENERGY & FUELS, 2021, 35 (05) : 3572 - 3580
  • [8] Mechanical properties of cathode materials for lithium-ion batteries
    Stallard, Joe C.
    Wheatcroft, Laura
    Booth, Samuel G.
    Boston, Rebecca
    Corr, Serena A.
    De Volder, Michael F. L.
    Inkson, Beverley J.
    Fleck, Norman A.
    [J]. JOULE, 2022, 6 (05) : 984 - 1007
  • [9] Cryochemical processing of cathode materials for lithium-ion batteries
    Brylev, OA
    Shlyakhtin, OA
    Egorov, A
    Kulova, TL
    Skundin, AM
    Pouchko, SV
    [J]. NEW TRENDS IN INTERCALATION COMPOUNDS FOR ENERGY STORAGE, 2002, 61 : 497 - 500
  • [10] Optimization of Layered Cathode Materials for Lithium-Ion Batteries
    Julien, Christian
    Mauger, Alain
    Zaghib, Karim
    Groult, Henri
    [J]. MATERIALS, 2016, 9 (07)