Human embryonic stem cells: the battle between self-renewal and differentiation

被引:15
|
作者
Darr, Henia [1 ]
Benvenisry, Nissim [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Life Sci, Dept Genet, IL-91904 Jerusalem, Israel
关键词
bFGF; BMPs; embryonic stem cells; Nanog; Oct4; pluriporency; self-renewal; Sox2;
D O I
10.2217/17460751.1.3.317
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Human embryonic stem cells are pluripotent cells derived from the inner cell mass of blastocyst-stage embryos. These cells possess two unique properties: an indefinite self-renewal capacity and pluripotency, the ability to differentiate to cells from the three germ layers. The pathways governing self-renewal and pluripotency are currently under intensive research. Much effort is devoted to the establishment of feeder-free cultures by elucidation of the cytokines and growth factors required for cell propagation. These seem thus far, to be distinct from those required by mouse embryonic stem cells. in addition, transcriptional regulators unique to embryonic stem cells seem to govern the pluripotent state. These transcriptional regulators determine cell fate, and decide whether the cell will remain pluripotent or differentiate. Together, the understanding of the exogenous and endogenous factors determining cell fate will facilitate the use of these cells in cell-based therapies and will allow understanding of early developmental processes.
引用
收藏
页码:317 / 325
页数:9
相关论文
共 50 条
  • [1] Human embryonic stem cells: Multilineage differentiation and mechanisms of self-renewal
    Draper, JS
    Fox, V
    ARCHIVES OF MEDICAL RESEARCH, 2003, 34 (06) : 558 - 564
  • [2] Self-renewal proliferation and lymphohematopoietic differentiation of human embryonic stem cells in culture
    Cheng, L
    Zang, X
    Dravid, G
    Ye, Z
    Hammond, H
    EXPERIMENTAL HEMATOLOGY, 2003, 31 (07) : 132 - 132
  • [3] Self-renewal and differentiation of pluripotent embryonic stem cells.
    Smith, AG
    DEVELOPMENTAL BIOLOGY, 2001, 235 (01) : 289 - 290
  • [4] The regulation of self-renewal in human embryonic stem cells
    Avery, Stuart
    Inniss, Katie
    Moore, Harry
    STEM CELLS AND DEVELOPMENT, 2006, 15 (05) : 729 - 740
  • [5] Mechanisms of self-renewal in human embryonic stem cells
    Stewart, Rebecca
    Stojkovic, Miodrag
    Lako, Majlinda
    EUROPEAN JOURNAL OF CANCER, 2006, 42 (09) : 1257 - 1272
  • [6] LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells
    Antonio Adamo
    Borja Sesé
    Stephanie Boue
    Julio Castaño
    Ida Paramonov
    Maria J. Barrero
    Juan Carlos Izpisua Belmonte
    Nature Cell Biology, 2011, 13 : 652 - 659
  • [7] LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells
    Adamo, Antonio
    Sese, Borja
    Boue, Stephanie
    Castano, Julio
    Paramonov, Ida
    Barrero, Maria J.
    Izpisua Belmonte, Juan Carlos
    NATURE CELL BIOLOGY, 2011, 13 (06) : 652 - U265
  • [8] Hyaluronic acid hydrogen for controlled self-renewal and differentiation of human embryonic stem cells
    Gerecht, Sharon
    Burdick, Jason A.
    Ferreira, Lino S.
    Townsend, Seth A.
    Langer, Robert
    Vunjak-Novakovic, Gordana
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (27) : 11298 - 11303
  • [9] Cell Cycle Transition in Human Embryonic Stem Cells During Self-Renewal and Differentiation
    Task, K.
    Banerjee, I.
    TISSUE ENGINEERING PART A, 2014, 20 : S28 - S28
  • [10] Assessing self-renewal and differentiation in human embryonic stem cell lines
    Cai, Jingli
    Chen, Jia
    Liu, Ying
    Miura, Takumi
    Luo, Yongquan
    Loring, Jeanne F.
    Freed, William J.
    Rao, Mahendra S.
    Zeng, Xianmin
    STEM CELLS, 2006, 24 (03) : 516 - 530