Scalable Performance Prediction of Codes with Memory Hierarchy and Pipelines

被引:7
|
作者
Chennupati, Gopinath [1 ]
Santhi, Nandakishore [1 ]
Eidenbenz, Stephan [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
Program analysis; analytical modeling; performance prediction; performance modeling; simulation; pipeline; co-design;
D O I
10.1145/3316480.3325518
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present the Analytical Memory Model with Pipelines (AMMP) of the Performance Prediction Toolkit (PPT). PPT-AMMP takes high-level source code and hardware architecture parameters as input, predicts runtime of that code on the target hardware platform, which is defined in the input parameters. PPT-AMMP transforms the code to an (architecture-independent) intermediate representation, then (i) analyzes the basic block structure of the code, (ii) processes architecture-independent virtual memory access patterns that it uses to build memory reuse distance distribution models for each basic block, (iii) runs detailed basic-block level simulations to determine hardware pipeline usage. Further, PPT-AMMP uses machine learning and regression techniques to build the prediction models based on small instances of the input code, then integrates into a higher-order discrete-event simulation model of PPT running on Simian PDES engine. We validate PPT-AMMP on four standard computational physics benchmarks, finally present a use case of hardware parameter sensitivity analysis to identify bottleneck hardware resources on different code inputs.
引用
收藏
页码:13 / 24
页数:12
相关论文
共 50 条
  • [1] AN ANALYTICAL MEMORY HIERARCHY MODEL FOR PERFORMANCE PREDICTION
    Chennupati, Gopinath
    Santhi, Nandakishore
    Eidenbenz, Stephan
    Thulasidasan, Sunil
    [J]. 2017 WINTER SIMULATION CONFERENCE (WSC), 2017, : 908 - 919
  • [2] A compiler tool to predict memory hierarchy performance of scientific codes
    Fraguela, BB
    Doallo, R
    Touriño, J
    Zapata, EL
    [J]. PARALLEL COMPUTING, 2004, 30 (02) : 225 - 248
  • [3] A Scalable Analytical Memory Model for CPU Performance Prediction
    Chennupati, Gopinath
    Santhi, Nandakishore
    Bird, Robert
    Thulasidasan, Sunil
    Badawy, Abdel-Hameed A.
    Misra, Satyajayant
    Eidenbenz, Stephan
    [J]. HIGH PERFORMANCE COMPUTING SYSTEMS: PERFORMANCE MODELING, BENCHMARKING, AND SIMULATION (PMBS 2017), 2018, 10724 : 114 - 135
  • [4] AMM: Scalable Memory Reuse Model to Predict the Performance of Physics Codes
    Chennupati, Gopinath
    Santhi, Nandakishore
    Eidenbenz, Stephan
    Thulasidasan, Sunil
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2017, : 649 - 650
  • [5] Machine Learning-enabled Scalable Performance Prediction of Scientific Codes
    Chennupati, Gopinath
    Santhi, Nandakishore
    Romero, Phill
    Eidenbenz, Stephan
    [J]. ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2021, 31 (02):
  • [6] Parallel performance prediction for multigrid codes on distributed memory architectures
    Romanazzi, Giuseppe
    Jimack, Peter K.
    [J]. HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, PROCEEDINGS, 2007, 4782 : 647 - 658
  • [7] Automatic Performance Analysis of OpenMP Codes on a Scalable Shared Memory System Using Periscope
    Benedict, Shajulin
    Gerndt, Michael
    [J]. APPLIED PARALLEL AND SCIENTIFIC COMPUTING, PT II, 2012, 7134 : 452 - 462
  • [8] Memory-Scalable GPU Spatial Hierarchy Construction
    Hou, Qiming
    Sun, Xin
    Zhou, Kun
    Lauterbach, Christian
    Manocha, Dinesh
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2011, 17 (04) : 466 - 474
  • [9] Runtime Reconfigurable Memory Hierarchy in Embedded Scalable Platforms
    Giri, Davide
    Mantovani, Paolo
    Carloni, Luca P.
    [J]. 24TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC 2019), 2019, : 719 - 726
  • [10] Impact of Memory Hierarchy on Memory Encryption Performance
    Prutyanov, Viktor V.
    Romashikhin, Mikhail Y.
    Vugenfirer, Yan
    Solovyev, Roman A.
    Romanov, Aleksandr Y.
    [J]. IEEE Access, 2024, 12 : 144812 - 144817