Error estimates for the Scaled Boundary Finite Element Method

被引:8
|
作者
Coelho, Karolinne O. [1 ]
Devloo, Philippe R. B. [1 ]
Gomes, Sonia M. [2 ]
机构
[1] Univ Estadual Campinas, FEC, R Josiah Willard Gibbs 85, BR-13083 Campinas, SP, Brazil
[2] Univ Estadual Campinas, IMECC, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Scaled boundary finite element method; A priori error estimates; Duffy's approximations; ISOPARAMETRIC ELEMENT; SINGULAR ELEMENT; ORDER;
D O I
10.1016/j.cma.2021.113765
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The Scaled Boundary Finite Element Method (SBFEM) is a technique in which approximation spaces are constructed using a semi-analytical approach. They are based on partitions of the computational domain by polygonal/polyhedral subregions, where the shape functions approximate local Dirichlet problems with piecewise polynomial trace data. Using this operator adaptation approach, and by imposing a starlike scaling requirement on the subregions, the representation of local SBFEM shape functions in radial and surface directions is obtained from eigenvalues and eigenfunctions of an ODE system, whose coefficients are determined by the element geometry and the trace polynomial spaces. The aim of this paper is to derive a priori error estimates for SBFEM's solutions of harmonic test problems. For that, the SBFEM spaces are characterized in the context of Duffy's approximations for which a gradient-orthogonality constraint is imposed. As a consequence, the scaled boundary functions are gradient-orthogonal to any function in Duffy's spaces vanishing at the mesh skeleton, a mimetic version of a well-known property valid for harmonic functions. This orthogonality property is applied to provide a priori SBFEM error estimates in terms of known finite element interpolant errors of the exact solution. Similarities with virtual harmonic approximations are also explored for the understanding of SBFEM convergence properties. Numerical experiments with 2D and 3D polytopal meshes confirm optimal SBFEM convergence rates for two test problems with smooth solutions. Attention is also paid to the approximation of a point singular solution by using SBFEM close to the singularity and finite element approximations elsewhere, revealing optimal accuracy rates of standard regular contexts. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Error estimation for the scaled boundary finite-element method
    Deeks, AJ
    Wolf, JP
    [J]. COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 997 - 1002
  • [2] The scaled boundary finite element method
    J. P. Wolf
    Martin Schanz
    [J]. Computational Mechanics, 2004, 33 (4) : 326 - 326
  • [3] Stress recovery and error estimation for the scaled boundary finite-element method
    Deeks, AJ
    Wolf, JP
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2002, 54 (04) : 557 - 583
  • [4] A posteriori error estimates with boundary correction for a cut finite element method
    Burman, Erik
    He, Cuiyu
    Larson, Mats G.
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (01) : 333 - 362
  • [5] A stochastic scaled boundary finite element method
    Long, X. Y.
    Jiang, C.
    Yang, C.
    Han, X.
    Gao, W.
    Liu, J.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 308 : 23 - 46
  • [6] A High Performance Scaled Boundary Finite Element Method
    Radmanovic, B.
    Katz, C.
    [J]. 9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS, 2010, 10
  • [7] Adaptivity for the scaled boundary finite-element method
    Deeks, AJ
    Wolf, JP
    [J]. COMPUTATIONAL MECHANICS, VOLS 1 AND 2, PROCEEDINGS: NEW FRONTIERS FOR THE NEW MILLENNIUM, 2001, : 1003 - 1008
  • [8] The scaled boundary finite element method in structural dynamics
    Song, Chongmin
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 77 (08) : 1139 - 1171
  • [9] A study of the convergence of the scaled boundary finite element method
    Deeks, AJ
    Costello, C
    [J]. MECHANICS OF STRUCTURES AND MATERIALS, 1999, : 35 - 40
  • [10] A novel error indicator and an adaptive refinement technique using the scaled boundary finite element method
    Song, Chongmin
    Ooi, Ean Tat
    Pramod, Aladurthi L. N.
    Natarajan, Sundararajan
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2018, 94 : 10 - 24