Feature weighting for naive Bayes using multi objective artificial bee colony algorithm

被引:6
|
作者
Chaudhuri, Abhilasha [1 ]
Sahu, Tirath Prasad [1 ]
机构
[1] Natl Inst Technol Raipur, Dept Informat Technol, Chhattisgarh, India
关键词
naive Bayes; feature weighting; multi objective optimisation; artificial bee colony;
D O I
10.1504/IJCSE.2021.113655
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Naive Bayes (NB) is a widely used classifier in the field of machine learning. However, its conditional independence assumption does not hold true in real-world applications. In literature, various feature weighting approaches have attempted to alleviate this assumption. Almost all of these approaches consider the relationship between feature-class (relevancy) and feature-feature (redundancy) independently, to determine the weights of features. We argue that these two relationships are mutually dependent and both cannot be improved simultaneously, i.e., form a trade-off. This paper proposes a new paradigm to determine the feature weight by formulating it as a multi-objective optimisation problem to balance the trade-off between relevancy and redundancy. Multi-objective artificial bee colony-based feature weighting technique for naive Bayes (MOABC-FWNB) is proposed. An extensive experimental study was conducted on 20 benchmark UCI datasets. Experimental results show that MOABC-FWNB outperforms NB and other existing state-of-the-art feature weighting techniques.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [1] A Feature Weighting Based Artificial Bee Colony Algorithm for Data Clustering
    Reisi, Manijeh
    Moradi, Parham
    Abdollahpouri, Alireza
    2016 EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2016, : 134 - 138
  • [2] A multi-objective artificial bee colony algorithm
    Akbari, Reza
    Hedayatzadeh, Ramin
    Ziarati, Koorush
    Hassanizadeh, Bahareh
    SWARM AND EVOLUTIONARY COMPUTATION, 2012, 2 : 39 - 52
  • [3] Multi-objective Artificial Bee Colony algorithm
    Wang, Yanjiao
    Li, Yaojie
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 1289 - 1293
  • [4] Modified Naive Bayes Algorithm for Network Intrusion Detection based on Artificial Bee Colony Algorithm
    Yang, Juan
    Ye, Zhiwei
    Yan, Lingyu
    Gu, Wei
    Wang, Ruoxi
    PROCEEDINGS OF THE 2018 IEEE 4TH INTERNATIONAL SYMPOSIUM ON WIRELESS SYSTEMS WITHIN THE INTERNATIONAL CONFERENCES ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS (IDAACS-SWS), 2018, : 35 - 40
  • [5] An artificial bee colony algorithm for multi-objective optimisation
    Luo, Jianping
    Liu, Qiqi
    Yang, Yun
    Li, Xia
    Chen, Min-rong
    Cao, Wenming
    APPLIED SOFT COMPUTING, 2017, 50 : 235 - 251
  • [6] A dynamic multi-colony artificial bee colony algorithm for multi-objective optimization
    Xiang, Yi
    Zhou, Yuren
    APPLIED SOFT COMPUTING, 2015, 35 : 766 - 785
  • [7] An elitism based multi-objective artificial bee colony algorithm
    Xiang, Yi
    Zhou, Yuren
    Liu, Hailin
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 245 (01) : 168 - 193
  • [8] Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm
    Zhang, Yong
    Cheng, Shi
    Shi, Yuhui
    Gong, Dun-Wei
    Zhao, Xinchao
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 137 : 46 - 58
  • [9] Multi-objective Job Shop Scheduling using a Modified Artificial Bee Colony Algorithm
    Zhang, Hao
    Zhu, Yunlong
    Ku, Tao
    2017 IEEE 7TH ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (CYBER), 2017, : 701 - 706
  • [10] Iris Recognition using Multi Objective Artificial Bee Colony Optimization Algorithm with Autoencoder Classifier
    Sheela S V
    Radhika K R
    Neural Processing Letters, 2022, 54 : 3489 - 3505