Downscaling of MODIS NDVI by Using a Convolutional Neural Network-Based Model with Higher Resolution SAR Data

被引:15
|
作者
Nomura, Ryota [1 ]
Oki, Kazuo [1 ,2 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
[2] Kyoto Univ Adv Sci, Dept Mech & Elect Syst Engn, Fac Engn, Kyoto 6218555, Japan
关键词
synthetic aperture radar (SAR); multi-sensor fusion; deep learning; downscaling; normalized difference vegetation index (NDVI); REMOTELY-SENSED IMAGERY; SENTINEL-1 RADAR DATA; SOIL-MOISTURE; TIME-SERIES; LANDSAT; SUPERRESOLUTION; SYSTEM;
D O I
10.3390/rs13040732
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The normalized difference vegetation index (NDVI) is a simple but powerful indicator, that can be used to observe green live vegetation efficiently. Since its introduction in the 1970s, NDVI has been used widely for land management, food security, and physical models. For these applications, acquiring NDVI in both high spatial resolution and high temporal resolution is preferable. However, there is generally a trade-off between temporal and spatial resolution when using satellite images. To relieve this problem, a convolutional neural network (CNN) based downscaling model was proposed in this research. This model is capable of estimating 10-m high resolution NDVI from MODIS (Moderate Resolution Imaging Spectroradiometer) 250-m resolution NDVI by using Sentinel-1 10-m resolution synthetic aperture radar (SAR) data. First, this downscaling model was trained to estimate Sentinel-2 10-m resolution NDVI from a combination of upscaled 250-m resolution Sentinel-2 NDVI and 10-m resolution Sentinel-1 SAR data, by using data acquired in 2019 in the target area. Then, the generality of this model was validated by applying it to test data acquired in 2020, with the result that the model predicted the NDVI with reasonable accuracy (MAE = 0.090, rho = 0.734 on average). Next, 250-m NDVI from MODIS data was used as input to confirm this model under conditions replicating an actual application case. Although there were mismatch in the original MODIS and Sentinel-2 NDVI data, the model predicted NDVI with acceptable accuracy (MAE = 0.108, rho = 0.650 on average). Finally, this model was applied to predict high spatial resolution NDVI using MODIS and Sentinel-1 data acquired in target area from 1 January 2020 similar to 31 December 2020. In this experiment, double cropping of cabbage, which was not observable at the original MODIS resolution, was observed by enhanced temporal resolution of high spatial resolution NDVI images (approximately x2.5). The proposed method enables the production of 10-m resolution NDVI data with acceptable accuracy when cloudless MODIS NDVI and Sentinel-1 SAR data is available, and can enhance the temporal resolution of high resolution 10-m NDVI data.
引用
下载
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Convolutional Neural Network-Based Friction Model Using Pavement Texture Data
    Yang, Guangwei
    Li, Qiang Joshua
    Zhan, You
    Fei, Yue
    Zhang, Aonan
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2018, 32 (06)
  • [2] Capsule and convolutional neural network-based SAR ship classification in Sentinel-1 data
    De laurentiis, Leonardo
    Pomente, Andrea
    Del Frate, Fabio
    Schiavon, Giovanni
    ACTIVE AND PASSIVE MICROWAVE REMOTE SENSING FOR ENVIRONMENTAL MONITORING III, 2019, 11154
  • [3] Convolutional Neural Network-Based Dictionary Learning for SAR Target Recognition
    Tao, Lei
    Zhou, Yue
    Jiang, Xue
    Liu, Xingzhao
    Zhou, Zhixin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (10) : 1776 - 1780
  • [4] A CONVOLUTIONAL NEURAL NETWORK-BASED MODEL OF NEURAL PATHWAYS IN THE RETINA
    Zamani, Yasin
    Nategh, Neda
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 6906 - 6909
  • [5] HaCk: Hand Gesture Classification Using a Convolutional Neural Network and Generative Adversarial Network-Based Data Generation Model
    Chatterjee, Kalyan
    Raju, M.
    Selvamuthukumaran, N.
    Pramod, M.
    Kumar, B. Krishna
    Bandyopadhyay, Anjan
    Mallik, Saurav
    INFORMATION, 2024, 15 (02)
  • [6] Convolutional Neural Network-based Jaywalking Data Generation and Classification
    Park, Jaeseo
    Lee, Yunsoo
    Heo, Jun Ho
    Kang, Suk-Ju
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 132 - 133
  • [7] A Bayesian convolutional neural network-based generalized linear model
    Jeon, Yeseul
    Chang, Won
    Jeong, Seonghyun
    Han, Sanghoon
    Park, Jaewoo
    BIOMETRICS, 2024, 80 (02)
  • [8] Convolutional Neural Network-based Model for Lung Sounds Classification
    Chanane, Hassen
    Bahoura, Mohammed
    2021 IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2021, : 555 - 558
  • [9] Convolutional Neural Network-Based Parkinson Disease Classification Using SPECT Imaging Data
    Hathaliya, Jigna
    Parekh, Raj
    Patel, Nisarg
    Gupta, Rajesh
    Tanwar, Sudeep
    Alqahtani, Fayez
    Elghatwary, Magdy
    Ivanov, Ovidiu
    Raboaca, Maria Simona
    Neagu, Bogdan-Constantin
    MATHEMATICS, 2022, 10 (15)
  • [10] Simultaneous denoising and spatial resolution enhancement using convolutional neural network-based linear model in diagnostic CT images
    Yim, Dobin
    Kim, Burnyoung
    Lee, Seungwan
    MEDICAL IMAGING 2020: PHYSICS OF MEDICAL IMAGING, 2020, 11312