Random walks on networks: Cumulative distribution of cover time

被引:10
|
作者
Zlatanov, Nikola [1 ]
Kocarev, Ljupco [1 ,2 ]
机构
[1] Macedonian Acad Sci & Arts, Skopje 1000, North Macedonia
[2] Univ Calif San Diego, Inst Nonlinear Sci, La Jolla, CA 92093 USA
关键词
graph theory; probability; random processes;
D O I
10.1103/PhysRevE.80.041102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive an exact closed-form analytical expression for the distribution of the cover time for a random walk over an arbitrary graph. In special case, we derive simplified exact expressions for the distributions of cover time for a complete graph, a cycle graph, and a path graph. An accurate approximation for the cover time distribution, with computational complexity of O(2n), is also presented. The approximation is numerically tested only for graphs with n < 1000 nodes.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Stationary distribution and cover time of random walks on random digraphs
    Cooper, Colin
    Frieze, Alan
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (02) : 329 - 362
  • [2] Cover time for random walks on arbitrary complex networks
    Maier, Benjamin F.
    Brockmann, Dirk
    [J]. PHYSICAL REVIEW E, 2017, 96 (04)
  • [3] Universal cover-time distribution of heterogeneous random walks
    Dong, Jia-Qi
    Han, Wen-Hui
    Wang, Yisen
    Chen, Xiao-Song
    Huang, Liang
    [J]. PHYSICAL REVIEW E, 2023, 107 (02)
  • [4] On the cover time for random walks on random graphs
    Jonasson, J
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1998, 7 (03): : 265 - 279
  • [5] The Cover Time of Deterministic Random Walks
    Friedrich, Tobias
    Sauerwald, Thomas
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [6] The Cover Time of Deterministic Random Walks
    Friedrich, Tobias
    Sauerwald, Thomas
    [J]. COMPUTING AND COMBINATORICS, 2010, 6196 : 130 - +
  • [7] Expansion and the Cover Time of Parallel Random Walks
    Sauerwald, Thomas
    [J]. PODC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2010, : 315 - 324
  • [8] A generalized cover time for random walks on graphs
    Banderier, C
    Dobrow, RP
    [J]. FORMAL POWER SERIES AND ALGEBRAIC COMBINATORICS, 2000, : 113 - 124
  • [9] Cover time and mixing time of random walks on dynamic graphs
    Avin, Chen
    Koucky, Michal
    Lotker, Zvi
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2018, 52 (04) : 576 - 596
  • [10] Tight bounds for the cover time of multiple random walks
    Elsaesser, Robert
    Sauerwald, Thomas
    [J]. THEORETICAL COMPUTER SCIENCE, 2011, 412 (24) : 2623 - 2641