Soft computing techniques in the design of a navigation, guidance and control system for an autonomous underwater vehicle

被引:7
|
作者
Loebis, D. [1 ]
Naeem, W.
Sutton, R.
Chudley, J.
Tetlow, S.
机构
[1] Univ Plymouth, Sch Engn, Marine & Ind Dynam Anal Res Grp, Plymouth PL4 8AA, Devon, England
[2] Cranfield Univ, Offshore Technol Ctr, Cranfield MK43 0AL, Beds, England
关键词
autonomous underwater vehicles; navigation systems; Kalman filters; predictive control;
D O I
10.1002/acs.929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discusses the navigation, guidance and control (NGC) of the Hammerhead autonomous underwater vehicle (AUV). The navigation system is based on the integrated use of the global positioning system (GPS) and several inertial navigation system (INS) sensors. A simple Kalman filter (SKF) and an extended Kalman filter (EKF) are proposed to be used subsequently to fuse the data from the INS sensors and to integrate them with that of the GPS. This paper highlights the use of soft computing techniques, with an emphasis on fuzzy logic and genetic algorithms (GAs), both in single- and multiobjective modes to the adaptation of the initial statistical assumption of both the SKF and EKF caused by possible changes in sensor noise characteristics. It will be shown how the adaptation made by the proposed techniques is able to enhance the accuracy of the navigation system and hence it is considered as a major contribution of this particular study in relation to AUV technology. The guidance and control system is based on a model predictive controller (MPC). The conventional MPC assumes a quadratic cost function and an optimization method such as quadratic programming (QP) to determine the optimum input to the process. For vehicle implementation, two modifications arc proposed to the standard MPC problem. The first involves the replacement of the conventional optimizer with a GA in single objective mode whilst the quadratic cost function is replaced by a fuzzy performance index. The advantages of both schemes are outlined and simulation results are presented to evaluate the performance of the proposed techniques, Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:205 / 236
页数:32
相关论文
共 50 条
  • [1] Development Navigation, Guidance & Control Program for GPS based Autonomous Ground Vehicle (AGV) using Soft Computing Techniques
    Yadav, Amit
    Gaur, Ajeet
    Jain, S. M.
    Chaturvedi, D. K.
    Sharma, Raghvendra
    MATERIALS TODAY-PROCEEDINGS, 2020, 29 : 530 - 535
  • [2] Advanced Hardware-In-The-Loop System for Guidance and Navigation Control Systems of Autonomous Underwater Vehicle
    Kim, Moon Hwan
    Yoo, Teasuk
    Nam, Kyungwon
    OCEANS 2024 - SINGAPORE, 2024,
  • [3] Guidance of an Autonomous Surface Vehicle for Underwater Navigation Aid
    Sousa, Jose P.
    Ferreira, Bruno M.
    Cruz, Nuno A.
    2018 IEEE/OES AUTONOMOUS UNDERWATER VEHICLE WORKSHOP (AUV), 2018,
  • [4] Control System Design for Autonomous Underwater Vehicle
    Pshikhopov, V. Kh
    Medvedev, M. Yu
    Gaiduk, A. R.
    Gurenko, B., V
    2013 IEEE LATIN AMERICAN ROBOTICS SYMPOSIUM (LARS 2013), 2013, : 77 - 82
  • [5] Control system design of an autonomous underwater vehicle
    Chen, Ming
    Zhan, Qiang
    Cai, Sanlong
    2006 IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS, VOLS 1 AND 2, 2006, : 761 - +
  • [6] Guidance, navigation and control system for the Tethra unmanned underwater vehicle
    Molnar, L.
    Omerdic, E.
    Toal, D.
    INTERNATIONAL JOURNAL OF CONTROL, 2007, 80 (07) : 1050 - 1076
  • [7] Model-based Guidance, Navigation and Control architecture for an Autonomous Underwater Vehicle
    Villa, Jose
    Vallicrosa, Guillem
    Aaltonen, Jussi
    Ridao, Pere
    Koskinen, Kari T.
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [8] Maneuvering control system design for autonomous underwater vehicle
    Miyamoto, S
    Aoki, T
    Maeda, T
    Hirokawa, K
    Ichikawa, T
    Saitou, T
    Kobayashi, H
    Kobayashi, E
    Iwasaki, S
    OCEANS 2001 MTS/IEEE: AN OCEAN ODYSSEY, VOLS 1-4, CONFERENCE PROCEEDINGS, 2001, : 482 - 489
  • [9] Design of the embedded navigation system of autonomous underwater vehicle based on the VxWorks
    Sun, Yushan
    Liang, Xiao
    Wan, Lei
    Pang, Yongjie
    2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 1031 - 1036
  • [10] Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle
    Guo, J
    Chiu, FC
    Huang, CC
    OCEAN ENGINEERING, 2003, 30 (16) : 2137 - 2155