Restricted sumsets in a finite abelian group

被引:3
|
作者
Guo, Shu-Guang [1 ]
机构
[1] Yancheng Teachers Univ, Sch Math Sci, Yancheng 224051, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Additive number theory; Restricted sumsets; Finite abelian groups; SPACES;
D O I
10.1016/j.disc.2009.06.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we Prove that if A and B are subsets of a finite abelian group G with vertical bar A vertical bar + vertical bar B vertical bar = vertical bar G vertical bar + L(G), then vertical bar A (+) over capB vertical bar >= vertical bar G vertical bar - 2, where L(G) = vertical bar{g : g is an element of G, 2g = 0}vertical bar and A (+) over capB = {a + b : a is an element of A, b is an element of B, a not equal b}. In addition, we give a complete description of the subsets A and B of G such that vertical bar A vertical bar + vertical bar B vertical bar = vertical bar G vertical bar + L(G) and A (+) over cap B not equal G. Our results generalize the corresponding theorems of Gallardo et al. in cyclic group Z/nZ [L. Gallardo, G. Grekos, L Habsieger, et al., Restricted addition in Z/nZ and an application to the Erdos-Ginzburg-Ziv problem, J. London Math. Soc. 65 (2) (2002) 513-523]. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:6530 / 6534
页数:5
相关论文
共 50 条
  • [1] On the generalized restricted sumsets in abelian groups
    Du, Shanshan
    Pan, Hao
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 194
  • [2] Estimates of the number of (k, l)-sumsets in the finite Abelian group
    Sargsyan V.G.
    Discrete Mathematics and Applications, 2017, 27 (04): : 223 - 229
  • [3] ON SMALL SUMSETS IN AN ABELIAN GROUP
    KEMPERMAN, JHB
    ACTA MATHEMATICA, 1960, 103 (1-2) : 63 - 88
  • [4] The number of sumsets in Abelian group
    Sapozhenko, Aleksandr A.
    Sargsyan, Vahe G.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2020, 30 (05): : 339 - 345
  • [5] Large restricted sumsets in general Abelian groups
    Hamidoune, Yahya Ould
    Lopez, Susana-Clara
    Plagne, Alain
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1348 - 1364
  • [6] Perfect sumsets in finite abelian groups
    Blokhuis, Aart
    Wilbrink, Henny A.
    Sali, Attila
    Linear Algebra and Its Applications, 1995, 226-228
  • [7] Counting sumsets and differences in an abelian group
    Sargsyan V.G.
    Journal of Applied and Industrial Mathematics, 2015, 9 (02) : 275 - 282
  • [8] PERFECT SUMSETS IN FINITE ABELIAN-GROUPS
    HAEMERS, W
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 : 47 - 56
  • [9] Restricted sumsets in finite nilpotent groups
    Du, Shanshan
    Pan, Hao
    ACTA ARITHMETICA, 2017, 178 (02) : 101 - 123
  • [10] Optimally small sumsets in finite abelian groups
    Eliahou, S
    Kervaire, M
    Plagne, A
    JOURNAL OF NUMBER THEORY, 2003, 101 (02) : 338 - 348