Distribution and characteristic functions for correlated complex Wishart matrices

被引:28
|
作者
Smith, Peter J. [1 ]
Garth, Lee M. [1 ]
机构
[1] Univ Canterbury, Dept Elect & Comp Engn, Christchurch, New Zealand
关键词
correlated Wishart; non-central distribution; eigenvalues; hypergeometric function;
D O I
10.1016/j.jmva.2006.09.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let A (t) be a complex Wishart process defined in terms of the M x N complex Gaussian matrix X(t) by A (t) = X(t)X(t)(H). The covariance matrix of the columns of X(t) is Sigma. If X(t), the underlying Gaussian process, is a correlated process over time, then we have dependence between samples of the Wishart process. In this paper, we study the joint statistics of the Wishart process at two points in time, t(1), t(2), where t(1) < t(2). In particular, we derive the following results: the joint density of the elements of A(t(1)),A(t2), the joint density of the eigenvalues of Sigma(-1)A (t(1)), Sigma(-1)A (t(2)), the characteristic function of the elements of A(t(1)), A (t(2)), the characteristic function of the eigenvalues of Sigma(-1)A(t(1)), Sigma(-1)A(t(2)). In addition, we give the characteristic functions of the eigenvalues of a central and non-central complex Wishart, and some applications of the results in statistics, engineering and information theory are outlined. (c) 2006 Published by Elsevier Inc.
引用
收藏
页码:661 / 677
页数:17
相关论文
共 50 条
  • [1] Distribution of the Smallest Eigenvalue of Complex Central Semi-correlated Wishart Matrices
    Niu, Fangfang
    Zhang, Haochuan
    Yang, Hongwen
    Yang, Dacheng
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1788 - 1792
  • [2] The largest eigenvalue characteristic of correlated complex Wishart matrices and its application to MIMO MRC systems
    Rui, Xianyi
    Hong, Rong
    Geng, Junping
    Huang, Xiaojing
    [J]. 2007 INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS AND INFORMATION TECHNOLOGIES, VOLS 1-3, 2007, : 375 - +
  • [3] Eigenvalue density of correlated complex random Wishart matrices
    Simon, SH
    Moustakas, AL
    [J]. PHYSICAL REVIEW E, 2004, 69 (06):
  • [4] Eigenvalue density of correlated complex random Wishart matrices
    Simon, Steven H.
    Moustakas, Aris L.
    [J]. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (6 2): : 065101 - 1
  • [5] Approximate Condition Number Distribution of Complex Non-central Correlated Wishart Matrices
    Wei, Lu
    Tirkkonen, Olav
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2011,
  • [6] On the Condition Number Distribution of Complex Wishart Matrices
    Matthaiou, Michail
    McKay, Matthew R.
    Smith, Peter J.
    Nossek, Josef A.
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2010, 58 (06) : 1705 - 1717
  • [7] COMPUTING THE LARGEST EIGENVALUE DISTRIBUTION FOR COMPLEX WISHART MATRICES
    Jones, Scott R.
    Howard, Stephen D.
    Clarkson, I. Vaughan L.
    Bialkowski, Konstanty S.
    Cochran, Douglas
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 3439 - 3443
  • [8] Distribution of the Demmel Condition Number of Complex Wishart Matrices
    Zhong, Caijun
    McKay, Matthew R.
    Ratnarajah, Tharm
    Wong, Kai-Kit
    [J]. 2010 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE GLOBECOM 2010, 2010,
  • [9] LARGE COMPLEX CORRELATED WISHART MATRICES: FLUCTUATIONS AND ASYMPTOTIC INDEPENDENCE AT THE EDGES
    Hachem, Walid
    Hardy, Adrien
    Najim, Jamal
    [J]. ANNALS OF PROBABILITY, 2016, 44 (03): : 2264 - 2348
  • [10] Correlated Wishart matrices and critical horizons
    Z. Burda
    A. Görlich
    J. Jurkiewicz
    B. Wacław
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 49 : 319 - 323