Making graphs solvable in peg solitaire

被引:1
|
作者
De Wiljes, Jan-Hendrik [1 ]
Kreh, Martin [2 ]
机构
[1] Free Univ Berlin, Inst Math, Berlin, Germany
[2] Univ Hildesheim, Inst Math & Appl Comp Sci, Hildesheim, Germany
关键词
peg solitaire; windmill; double star;
D O I
10.5614/ejgta.2022.10.2.3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. Since then peg solitaire has been considered on quite a few classes of graphs. Beeler and Gray introduced the natural idea of adding edges to make an unsolvable graph solvable. Recently, the graph invariant ms(G), which is the minimal number of additional edges needed to make G solvable, has been introduced and investigated on banana trees by the authors. In this article, we determine ms(G) for several families of unsolvable graphs. Furthermore, we provide some general results for this number of Hamiltonian graphs and graphs obtained via binary graph operations.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 50 条
  • [1] Peg solitaire on graphs
    Beeler, Robert A.
    Hoilman, D. Paul
    DISCRETE MATHEMATICS, 2011, 311 (20) : 2198 - 2202
  • [2] Peg solitaire on graphs - A survey
    De Wiljes, Jan-Hendrik
    Kreh, Martin
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (04)
  • [3] PEG SOLITAIRE ON LINE GRAPHS
    Kreh, Martin
    De Wiljes, Jan-Hendrik
    TRANSACTIONS ON COMBINATORICS, 2024, 13 (03) : 257 - 277
  • [4] Reversible peg solitaire on graphs
    Engbers, John
    Stocker, Christopher
    DISCRETE MATHEMATICS, 2015, 338 (11) : 2014 - 2019
  • [5] Peg solitaire in three colors on graphs
    Davis, Tara C.
    De Lamere, Alexxis
    Sopena, Gustavo
    Soto, Roberto C.
    Vyas, Sonali
    Wong, Melissa
    INVOLVE, A JOURNAL OF MATHEMATICS, 2020, 13 (05): : 791 - 802
  • [6] Pagoda functions for peg solitaire on graphs
    Kreh, Martin
    DISCRETE APPLIED MATHEMATICS, 2024, 358 : 184 - 202
  • [7] Peg Solitaire on Cartesian Products of Graphs
    Kreh, Martin
    de Wiljes, Jan-Hendrik
    GRAPHS AND COMBINATORICS, 2021, 37 (03) : 907 - 917
  • [8] Peg Solitaire on Cartesian Products of Graphs
    Martin Kreh
    Jan-Hendrik de Wiljes
    Graphs and Combinatorics, 2021, 37 : 907 - 917
  • [9] Peg solitaire game on Sierpinski graphs
    Akyar, Handan
    Cakmak, Nazlican
    Torun, Nilay
    Akyar, Fmrah
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2249 - 2258
  • [10] Examples of Edge Critical Graphs in Peg Solitaire
    Beeler, Robert A.
    Gray, Aaron D.
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2020, 2022, 388 : 157 - 169