Remarks on 16th weak Hilbert problem for n=2

被引:48
|
作者
Li, CZ [1 ]
Zhang, ZH
机构
[1] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[2] Peking Univ, Inst Math, Beijing 100871, Peoples R China
关键词
D O I
10.1088/0951-7715/15/6/310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the exact upper bound on the number of zeros of. Abelian integrals for. all quadratic polynomial one-form over closed orbits of generic quadratic Hamiltonian systems having a saddle loop and a cusp point. This result, together with the results by Horozov and Iliev (1994 Proc. Lond. Math. Soc. 69 198-224), by Gavrilov (2001 Invent. Math. 143 449-97), and by Zhang and Li (1993 Res. Rep. 33; Adv. Math. 26 445-60), gives the final answer to the weak Hilbert 16th problem for n = 2.
引用
收藏
页码:1975 / 1992
页数:18
相关论文
共 50 条
  • [1] A unified proof on the weak Hilbert 16th problem for n=2
    Chen, F
    Li, CZ
    Llibre, J
    Zhang, ZH
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (02) : 309 - 342
  • [2] Weak infinitesimal Hilbert's 16th problem
    Khovanskaya I.A.
    Proceedings of the Steklov Institute of Mathematics, 2006, 254 (1) : 201 - 230
  • [3] A NOTE ON HILBERT 16TH PROBLEM
    Gasull, Armengol
    Santana, Paulo
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (02) : 669 - 677
  • [4] MATHEMATICS - HILBERT 16TH PROBLEM
    STEWART, I
    NATURE, 1987, 326 (6110) : 248 - 248
  • [5] On Hilbert's 16th problem
    Muresan, M
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1999, 55 (3-4): : 299 - 331
  • [6] Statistics on Hilbert's 16th Problem
    Lerario, Antonio
    Lundberg, Erik
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (12) : 4293 - 4321
  • [7] On a variant of Hilbert's 16th problem
    Gasull, Armengol
    Santana, Paulo
    NONLINEARITY, 2024, 37 (12)
  • [8] HILBERT'S 16TH PROBLEM FOR n=3:H(3)≥11
    李继彬
    黄其明
    Science Bulletin, 1986, (10) : 718 - 718
  • [9] Some lower bounds for h(n) in Hilbert's 16th problem
    Li J.
    Chan H.S.Y.
    Chung K.W.
    Qualitative Theory of Dynamical Systems, 2002, 3 (2) : 345 - 360
  • [10] Centennial history of Hilbert's 16th problem
    Ilyashenko, Y
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (03): : 301 - 354