Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces

被引:72
|
作者
Chang, S. S. [1 ]
Lee, H. W. Joseph
Chan, C. K.
机构
[1] Yibin Univ, Dept Math, Yibin 644007, Sichuan, Peoples R China
[2] Hong Kong Polytech Univ, Dept Appl Math, Kowloon, Hong Kong, Peoples R China
关键词
relaxed cocoercive nonlinear variational inequality; projection method; relaxed cocoercive mapping; cocoercive mapping; convergence of projection method;
D O I
10.1016/j.aml.2006.04.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The approximate solvability of a generalized system for relaxed cocoercive nonlinear variational inequality in Hilbert spaces is studied, based on the convergence of projection methods. The results presented in this paper extend and improve the main results of [R.U. Verma, Generalized system for relaxed cocoercive variational inequalities and its projection methods, J. Optim. Theory Appl. 121 (1) (2004) 203-210; R.U. Verma, Generalized class of partial relaxed monotonicity and its connections, Adv. Nonlinear Var. Inequal. 7 (2) (2004) 155-164; R.U. Verma, General convergence analysis for two-step projection methods and applications to variational problems, Appl. Math. Lett. 18 (11) (2005) 1286-1292; N.H. Xiu, J.Z. Zhang, Local convergence analysis of projection type algorithms: Unified approach, J. Optim. Theory Appl. 115 (2002) 211-230; H. Nie, Z. Liu, K.H. Kim, S.M. Kang, A system of nonlinear variational inequalities involving strongly monotone and pseudocontractive mappings, Adv. Nonlinear Var. Inequal. 6 (2) (2003) 91-99]. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:329 / 334
页数:6
相关论文
共 50 条