Efficient Gaussian Mixture Model Evaluation in Voice Conversion

被引:0
|
作者
Tian, Jilei [1 ]
Nurminen, Jani [1 ]
Popa, Victor [1 ]
机构
[1] Nokia Res Ctr, Multimedia Technol Lab, Tampere, Finland
关键词
voice conversion; speech subjective evaluation; Gaussian mixture model;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Voice conversion refers to the adaptation of the characteristics of a source speaker's voice to those of a target speaker. Gaussian mixture models (GMM) have been found to be efficient in the voice conversion task. The GMM parameters are estimated from a training set with the goal to minimize the mean squared error (MSE) between the transformed and target vectors. Obviously, the quality of the GMM model plays an important role in achieving better voice conversion quality. This paper presents a very efficient approach for the evaluation of GMM models directly from the model parameters without using any test data, facilitating the improvement of the transformation performance especially in the case of embedded implementations. Though the proposed approach can be used in any application that utilizes GMM based transformation, we take voice conversion as an example application throughout the paper. The proposed approach is experimented with in this context and evaluated against an MSE based evaluation method. The results show that the proposed method is in line with all subjective observations and MSE results.
引用
收藏
页码:2282 / 2285
页数:4
相关论文
共 50 条
  • [1] Voice Conversion Using Structrued Gaussian Mixture Model
    Zeng, Daojian
    Yu, Yibiao
    [J]. 2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 541 - 544
  • [2] Voice conversion algorithm using phoneme Gaussian mixture model
    Sheng, L
    Yin, JX
    Huang, JC
    [J]. PROCEEDINGS OF THE 2004 INTERNATIONAL SYMPOSIUM ON INTELLIGENT MULTIMEDIA, VIDEO AND SPEECH PROCESSING, 2004, : 5 - 8
  • [3] VOICE CONVERSION BASED ON MATRIX VARIATE GAUSSIAN MIXTURE MODEL
    Saito, Daisuke
    Doi, Hidenobu
    Minematsu, Nobuaki
    Hirose, Keikichi
    [J]. 2014 12TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2014, : 567 - 571
  • [4] Contribution on Gaussian Mixture Model Order Determination for Voice Conversion
    Ben Amara, Ahmed
    Ben Jebara, Sofia
    [J]. 9TH INTERNATIONAL SYMPOSIUM ON SIGNAL, IMAGE, VIDEO AND COMMUNICATIONS (ISIVC 2018), 2018, : 87 - 92
  • [5] STORYTELLING VOICE CONVERSION: EVALUATION EXPERIMENT USING GAUSSIAN MIXTURE MODELS
    Pribil, Jiri
    Pribilova, Anna
    Durackova, Daniela
    [J]. JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2015, 66 (04): : 194 - 202
  • [6] Voice conversion using structured Gaussian mixture model in cepstrum eigenspace
    LI Yangchun
    YU Yibiao
    [J]. Chinese Journal of Acoustics, 2015, 34 (03) : 325 - 336
  • [7] Voice conversion using Viterbi algorithm based on Gaussian mixture model
    Jian Zhi-Hua
    Yang Zhen
    [J]. 2007 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, VOLS 1 AND 2, 2007, : 40 - 43
  • [8] Voice Conversion Using Gaussian Mixture Models
    D'souza, Kevin
    Talele, K. T. V.
    [J]. 2015 INTERNATIONAL CONFERENCE ON COMMUNICATION, INFORMATION & COMPUTING TECHNOLOGY (ICCICT), 2015,
  • [9] Voice conversion using canonical correlation analysis based on Gaussian mixture model
    Jian, ZhiHua
    Yang, Zhen
    [J]. SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 1, PROCEEDINGS, 2007, : 210 - +
  • [10] A Voice Conversion System Based on the Harmonic plus Noise Excitation and Gaussian Mixture Model
    Wu Lifang
    Zhang Linghua
    [J]. PROCEEDINGS OF THE 2012 SECOND INTERNATIONAL CONFERENCE ON INSTRUMENTATION & MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2012), 2012, : 1575 - 1578