Automated Screening of Sickle Cells Using a Smartphone-Based Microscope and Deep Learning

被引:0
|
作者
de Haan, Kevin [1 ,2 ,3 ]
Koydemir, Hatice Ceylan [1 ,2 ,3 ]
Rivenson, Yair [1 ,2 ,3 ]
Tseng, Derek [1 ,2 ,3 ]
Van Dyne, Elizabeth [4 ]
Bakic, Lissette [5 ]
Karinca, Doruk [6 ]
Liang, Kyle [6 ]
Ilango, Megha [6 ]
Gumustekin, Esin [7 ]
Ozcan, Aydogan [1 ,2 ,3 ,8 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pediat, Div Hematol Oncol, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Comp Sci, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurosci, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a deep learning-based framework for performing automatic screening of sickle cells using a smartphone-based microscope. We achieved 98% accuracy when blindly testing 96 human blood smear slides, including 32 with sickle cell disease. (C) 2020 The Author(s)
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Automated screening of sickle cells using a smartphone-based microscope and deep learning
    de Haan, Kevin
    Koydemir, Hatice Ceylan
    Rivenson, Yair
    Tseng, Derek
    Van Dyne, Elizabeth
    Bakic, Lissette
    Karinca, Doruk
    Liang, Kyle
    Ilango, Megha
    Gumustekin, Esin
    Ozcan, Aydogan
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [2] Automated screening of sickle cells using a smartphone-based microscope and deep learning
    Kevin de Haan
    Hatice Ceylan Koydemir
    Yair Rivenson
    Derek Tseng
    Elizabeth Van Dyne
    Lissette Bakic
    Doruk Karinca
    Kyle Liang
    Megha Ilango
    Esin Gumustekin
    Aydogan Ozcan
    npj Digital Medicine, 3
  • [3] Smartphone-based, automated detection of urine albumin using deep learning approach
    Thakur, Ritambhara
    Maheshwari, Prateek
    Datta, Sudip Kumar
    Dubey, Satish Kumar
    MEASUREMENT, 2022, 194
  • [4] A smartphone-based petrographic microscope
    Di Febo, Roberta
    Casas, Lluis
    Antonini, Andrea
    MICROSCOPY RESEARCH AND TECHNIQUE, 2021, 84 (07) : 1414 - 1421
  • [5] Smartphone-Based Oral Lesion Image Segmentation Using Deep Learning
    Thakuria, Tapabrat
    Mahanta, Lipi B.
    Khataniar, Sanjib Kumar
    Goswami, Rahul Dev
    Baruah, Nevica
    Bharali, Trailokya
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
  • [6] Smartphone-based intraocular lens microscope
    Chandrakanth, Prithvi
    Chandrakanth, K. S.
    INDIAN JOURNAL OF OPHTHALMOLOGY, 2020, 68 (10) : 2213 - 2215
  • [7] DEEP LEARNING-ENABLED SMARTPHONE-BASED SYSTEM FOR AUTOMATED EMBRYO ASSESSMENTS AND EVALUATION.
    Kanakasabapathy, Manoj Kumar
    Thirumalaraju, Prudhvi
    Bormann, Charles L.
    Kandula, Hemanth
    Pavan, Sandeep Kota Sai
    Yarravarapu, Divyank
    Shafiee, Hadi
    FERTILITY AND STERILITY, 2019, 112 (03) : E285 - E286
  • [8] DeepWalking: Enabling Smartphone-based Walking Speed Estimation Using Deep Learning
    Shrestha, Aawesh
    Won, Myounggyu
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [9] Smartphone-Based Pavement Roughness Estimation Using Deep Learning with Entity Embedding
    Aboah, Armstrong
    Adu-Gyamfi, Yaw
    ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2020, 12 (3-4)
  • [10] The use of deep learning for smartphone-based human activity recognition
    Stampfler, Tristan
    Elgendi, Mohamed
    Fletcher, Richard Ribon
    Menon, Carlo
    FRONTIERS IN PUBLIC HEALTH, 2023, 11