Automated Screening of Sickle Cells Using a Smartphone-Based Microscope and Deep Learning

被引:0
|
作者
de Haan, Kevin [1 ,2 ,3 ]
Koydemir, Hatice Ceylan [1 ,2 ,3 ]
Rivenson, Yair [1 ,2 ,3 ]
Tseng, Derek [1 ,2 ,3 ]
Van Dyne, Elizabeth [4 ]
Bakic, Lissette [5 ]
Karinca, Doruk [6 ]
Liang, Kyle [6 ]
Ilango, Megha [6 ]
Gumustekin, Esin [7 ]
Ozcan, Aydogan [1 ,2 ,3 ,8 ]
机构
[1] Univ Calif Los Angeles, David Geffen Sch Med, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, David Geffen Sch Med, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pediat, Div Hematol Oncol, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Pathol & Lab Med, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, David Geffen Sch Med, Dept Comp Sci, Los Angeles, CA 90095 USA
[7] Univ Calif Los Angeles, David Geffen Sch Med, Dept Neurosci, Los Angeles, CA 90095 USA
[8] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a deep learning-based framework for performing automatic screening of sickle cells using a smartphone-based microscope. We achieved 98% accuracy when blindly testing 96 human blood smear slides, including 32 with sickle cell disease. (C) 2020 The Author(s)
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Automated screening of sickle cells using a smartphone-based microscope and deep learning
    de Haan, Kevin
    Koydemir, Hatice Ceylan
    Rivenson, Yair
    Tseng, Derek
    Van Dyne, Elizabeth
    Bakic, Lissette
    Karinca, Doruk
    Liang, Kyle
    Ilango, Megha
    Gumustekin, Esin
    Ozcan, Aydogan
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [2] Automated screening of sickle cells using a smartphone-based microscope and deep learning
    Kevin de Haan
    Hatice Ceylan Koydemir
    Yair Rivenson
    Derek Tseng
    Elizabeth Van Dyne
    Lissette Bakic
    Doruk Karinca
    Kyle Liang
    Megha Ilango
    Esin Gumustekin
    Aydogan Ozcan
    [J]. npj Digital Medicine, 3
  • [3] Smartphone-based, automated detection of urine albumin using deep learning approach
    Thakur, Ritambhara
    Maheshwari, Prateek
    Datta, Sudip Kumar
    Dubey, Satish Kumar
    [J]. MEASUREMENT, 2022, 194
  • [4] A smartphone-based petrographic microscope
    Di Febo, Roberta
    Casas, Lluis
    Antonini, Andrea
    [J]. MICROSCOPY RESEARCH AND TECHNIQUE, 2021, 84 (07) : 1414 - 1421
  • [5] Smartphone-based intraocular lens microscope
    Chandrakanth, Prithvi
    Chandrakanth, K. S.
    [J]. INDIAN JOURNAL OF OPHTHALMOLOGY, 2020, 68 (10) : 2213 - 2215
  • [6] DEEP LEARNING-ENABLED SMARTPHONE-BASED SYSTEM FOR AUTOMATED EMBRYO ASSESSMENTS AND EVALUATION.
    Kanakasabapathy, Manoj Kumar
    Thirumalaraju, Prudhvi
    Bormann, Charles L.
    Kandula, Hemanth
    Pavan, Sandeep Kota Sai
    Yarravarapu, Divyank
    Shafiee, Hadi
    [J]. FERTILITY AND STERILITY, 2019, 112 (03) : E285 - E286
  • [7] DeepWalking: Enabling Smartphone-based Walking Speed Estimation Using Deep Learning
    Shrestha, Aawesh
    Won, Myounggyu
    [J]. 2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [8] Smartphone-Based Pavement Roughness Estimation Using Deep Learning with Entity Embedding
    Aboah, Armstrong
    Adu-Gyamfi, Yaw
    [J]. ADVANCES IN DATA SCIENCE AND ADAPTIVE ANALYSIS, 2020, 12 (3-4)
  • [9] The use of deep learning for smartphone-based human activity recognition
    Stampfler, Tristan
    Elgendi, Mohamed
    Fletcher, Richard Ribon
    Menon, Carlo
    [J]. FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [10] Promoting smartphone-based keratitis screening using meta-learning: A multicenter study
    Li, Zhongwen
    Wang, Yangyang
    Chen, Kuan
    Qiang, Wei
    Zong, Xihang
    Ding, Ke
    Wang, Shihong
    Yin, Shiqi
    Jiang, Jiewei
    Chen, Wei
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 157