Cusp Formation for a Nonlocal Evolution Equation

被引:4
|
作者
Hoang, Vu [1 ]
Radosz, Maria [1 ]
机构
[1] Rice Univ, Dept Math, MS 136,Box 1892, Houston, TX 77251 USA
基金
美国国家科学基金会;
关键词
MODEL;
D O I
10.1007/s00205-017-1094-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Cordoba et al. (Ann Math 162(3): 1377-1389, 2005) introduced a nonlocal active scalar equation as a one-dimensional analogue of the surface-quasigeostrophic equation. It has been conjectured, based on numerical evidence, that the solution forms a cusp-like singularity in finite time. Up until now, no active scalar with nonlocal flux is known for which cusp formation has been rigorously shown. In this paper, we introduce and study a nonlocal active scalar, inspired by the CordobaCordoba- Fontelos equation, and prove that either a cusp-or needle-like singularity forms in finite time.
引用
收藏
页码:1021 / 1036
页数:16
相关论文
共 50 条
  • [1] Cusp Formation for a Nonlocal Evolution Equation
    Vu Hoang
    Maria Radosz
    Archive for Rational Mechanics and Analysis, 2017, 224 : 1021 - 1036
  • [2] NUMERICAL APPROXIMATIONS FOR A NONLOCAL EVOLUTION EQUATION
    Perez-Llanos, Mayte
    Rossi, Julio D.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 2103 - 2123
  • [3] Slow Motion and Metastability for a Nonlocal Evolution Equation
    Paolo Buttà
    Anna de Masi
    Emanuele Rosatelli
    Journal of Statistical Physics, 2003, 112 : 709 - 764
  • [4] THE NONLOCAL INITIAL PROBLEMS OF A SEMILINEAR EVOLUTION EQUATION
    王远弟
    冉启康
    Annals of Differential Equations, 2004, (04) : 413 - 422
  • [5] Nonlocal controllability of fractional measure evolution equation
    Gu, Haibo
    Sun, Yu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [6] NONLOCAL SOLUTIONS AND CONTROLLABILITY OF SCHRODINGER EVOLUTION EQUATION
    Malaguti, Luisa
    Yoshii, Kentarou
    FIXED POINT THEORY, 2020, 21 (02): : 657 - 684
  • [7] Nonlocal controllability of fractional measure evolution equation
    Haibo Gu
    Yu Sun
    Journal of Inequalities and Applications, 2020
  • [8] Slow motion and metastability for a nonlocal evolution equation
    Buttà, P
    de Masi, A
    Rosatelli, E
    JOURNAL OF STATISTICAL PHYSICS, 2003, 112 (3-4) : 709 - 764
  • [9] Formation of singularities for a transport equation with nonlocal velocity
    Córdoba, A
    Córdoba, D
    Fontelos, MA
    ANNALS OF MATHEMATICS, 2005, 162 (03) : 1377 - 1389
  • [10] PATTERN FORMATION IN A NONLOCAL CONVECTIVE FISHER EQUATION
    da Cunha, J. A. R.
    Rezende, G. R.
    Penna, A. L. A.
    Morgado, R.
    Oliveira, F. A.
    ACTA PHYSICA POLONICA B, 2009, 40 (05): : 1473 - 1483