On the Length of a Random Minimum Spanning Tree

被引:16
|
作者
Cooper, Colin [1 ]
Frieze, Alan [2 ]
Ince, Nate [2 ]
Janson, Svante [3 ]
Spencer, Joel [4 ]
机构
[1] Univ London, Kings Coll, Dept Comp Sci, London WC2R 2LS, England
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15217 USA
[3] Uppsala Univ, Dept Math, SE-75310 Uppsala, Sweden
[4] NYU, Courant Inst, New York, NY 10012 USA
来源
COMBINATORICS PROBABILITY & COMPUTING | 2016年 / 25卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
LIMIT; GRAPH;
D O I
10.1017/S0963548315000024
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the expected value of the length L-n of the minimum spanning tree of the complete graph K-n when each edge e is given an independent uniform [0, 1] edge weight. We sharpen the result of Frieze [6] that lim(n ->infinity) E(L-n) = zeta(3) and show that E(L-n) = zeta(3) + c(1)/n + c(2) + o(1)/n4/3, where c(1), c(2) are explicitly defined constants.
引用
收藏
页码:89 / 107
页数:19
相关论文
共 50 条
  • [1] The lower tail of the random minimum spanning tree
    Flaxman, Abraham D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2007, 14 (01):
  • [2] ON THE VALUE OF A RANDOM MINIMUM SPANNING TREE PROBLEM
    FRIEZE, AM
    DISCRETE APPLIED MATHEMATICS, 1985, 10 (01) : 47 - 56
  • [3] ON RANDOM MINIMUM LENGTH SPANNING-TREES
    FRIEZE, AM
    MCDIARMID, CJH
    COMBINATORICA, 1989, 9 (04) : 363 - 374
  • [4] On the random 2-stage minimum spanning tree
    Flaxman, Abraham D.
    Frieze, Alan
    Krivelevich, Michael
    PROCEEDINGS OF THE SIXTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2005, : 919 - 926
  • [5] Minimum spanning tree problem of uncertain random network
    Yuhong Sheng
    Zhongfeng Qin
    Gang Shi
    Journal of Intelligent Manufacturing, 2017, 28 : 565 - 574
  • [6] On finding a minimum spanning tree in a network with random weights
    McDiarmid, C
    Johnson, T
    Stone, HS
    RANDOM STRUCTURES & ALGORITHMS, 1997, 10 (1-2) : 187 - 204
  • [7] ON THE VALUE OF A RANDOM MINIMUM SPANNING TREE PROBLEM.
    Frieze, A.M.
    Discrete Applied Mathematics, 1985, 10 (01): : 47 - 56
  • [8] On the random 2-stage minimum spanning tree
    Flaxman, AD
    Frieze, A
    Krivelevich, M
    RANDOM STRUCTURES & ALGORITHMS, 2006, 28 (01) : 24 - 36
  • [9] Critical Random Graphs and the Structure of a Minimum Spanning Tree
    Addario-Berry, L.
    Broutin, N.
    Reed, B.
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (03) : 323 - 347
  • [10] Minimum spanning tree problem of uncertain random network
    Sheng, Yuhong
    Qin, Zhongfeng
    Shi, Gang
    JOURNAL OF INTELLIGENT MANUFACTURING, 2017, 28 (03) : 565 - 574