Reduced-order H∞ filtering for singular systems

被引:123
|
作者
Xu, Shengyuan [1 ]
Lam, James
机构
[1] Nanjing Univ Sci & Technol, Dept Automat, Nanjing 210094, Peoples R China
[2] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
continuous systems; discrete systems; H-infinity filtering; linear matrix inequality; reduced-order filters; singular systems;
D O I
10.1016/j.sysconle.2006.07.010
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper solves the problem of reduced-order H-infinity filtering for singular systems. The purpose is to design linear filters with a specified order lower than the given system such that the filtering error dynamic system is regular, impulse-free (or causal), stable, and satisfies a prescribed H-infinity performance level. One major contribution of the present work is that necessary and sufficient conditions for the solvability of this problem are obtained for both continuous and discrete singular systems. These conditions are characterized in terms of linear matrix inequalities (LMIs) and a coupling non-convex rank constraint. Moreover, an explicit parametrization of all desired reduced-order filters is presented when these inequalities are feasible. In particular, when a static or zeroth-order H-infinity filter is desired, it is shown that the H-infinity filtering problem reduces to a convex LMI problem. All these results are expressed in terms of the original system matrices without decomposition, which makes the design procedure simple and directly. Last but not least, the results have generalized previous works on H-infinity filtering for state-space systems. An illustrative example is given to demonstrate the effectiveness of the proposed approach. (c) 2006 Elsevier B.V All rights reserved.
引用
收藏
页码:48 / 57
页数:10
相关论文
共 50 条
  • [1] Reduced-order H∞ Filtering for Singular Systems with Network Delays
    Lu, Renquan
    Xu, Yong
    Xue, Anke
    Su, Hongye
    Chu, Jian
    [J]. ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 2729 - +
  • [2] Reduced-order solutions for the singular H∞ filtering problem
    Ariola, M
    Pironti, A
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (02) : 271 - 275
  • [3] Reduced-order H∞ filtering for Stochastic systems
    Xu, SY
    Chen, TW
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (12) : 2998 - 3007
  • [4] On reduced-order H∞ filtering for nonlinear systems
    Li, YF
    Yung, CF
    Sheu, HT
    [J]. PROCEEDINGS OF THE 40TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2001, : 2562 - 2567
  • [5] Reduced-order H∞ filtering for discrete-time singular systems with lossy measurements
    Lu, R.
    Su, H.
    Chu, J.
    Zhou, S.
    Fu, M.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2010, 4 (01): : 151 - 163
  • [6] Reduced-order H∞ filtering for discrete-time singular systems under fading channels
    Cai, Li-Juan
    Chang, Xiao-Heng
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (01) : 99 - 112
  • [7] Reduced-order Dissipative Filtering for Discrete-time Singular Systems
    Feng, Zhiguang
    Lam, James
    [J]. 2013 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2013,
  • [8] Reduced-order H∞ Filtering for Commensurate Fractional-order Systems
    Shen, Jun
    Lam, James
    Li, Ping
    [J]. 2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 4411 - 4415
  • [9] Reduced-Order H∞ Filtering for 2-D Singular Roesser Models
    Xu Huiling
    Zou Yun
    [J]. Proceedings of the 27th Chinese Control Conference, Vol 7, 2008, : 772 - 776
  • [10] Reduced-Order Filtering for Singular Markovian Jump Systems With Incomplete Transition Rates
    Zhang, Shaoqing
    [J]. IEEE ACCESS, 2020, 8 : 135320 - 135328