Generative Adversarial Capsule Network With ConvLSTM for Hyperspectral Image Classification

被引:26
|
作者
Wang, Wei-Ye [1 ]
Li, Heng-Chao [1 ]
Deng, Yang-Jun [1 ]
Shao, Li-Yang [2 ]
Lu, Xiao-Qiang [3 ,4 ]
Du, Qian [5 ]
机构
[1] Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu 610031, Peoples R China
[2] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
[3] Chinese Acad Sci, Key Lab Spectral Imaging Technol, Xian 710119, Peoples R China
[4] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Peoples R China
[5] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
基金
中国国家自然科学基金;
关键词
Capsule network (CapsNet); convolutional neural network (CNN); data augmentation; deep learning; generative adversarial network (GAN); hyperspectral image (HSI) classification;
D O I
10.1109/LGRS.2020.2976482
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, deep learning has been widely applied in hyperspectral image (HSI) classification since it can extract high-level spatial-spectral features. However, deep learning methods are restricted due to the lack of sufficient annotated samples. To address this problem, this letter proposes a novel generative adversarial network (GAN) for HSI classification that can generate artificial samples for data augmentation to improve the HSI classification performance with few training samples. In the proposed network, a new discriminator is designed by exploiting capsule network (CapsNet) and convolutional long short-term memory (ConvLSTM), which extracts the low-level features and combines them together with local space sequence information to form the high-level contextual features. In addition, a structured sparse L-2(,1) constraint is imposed on sample generation to control the modes of data being generated and achieve more stable training. The experimental results on two real HSI data sets show that the proposed method can obtain better classification performance than the several state-of-the-art deep classification methods.
引用
收藏
页码:523 / 527
页数:5
相关论文
共 50 条
  • [1] A general generative adversarial capsule network for hyperspectral image spectral-spatial classification
    Xue, Zhixiang
    REMOTE SENSING LETTERS, 2020, 11 (01) : 19 - 28
  • [2] Generative Adversarial Network With Transformer for Hyperspectral Image Classification
    Hao, Siyuan
    Xia, Yufeng
    Ye, Yuanxin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [3] Hyperspectral Image Classification Based on Residual Generative Adversarial Network
    Chen Ming
    Xi Xiangyun
    Wang Yang
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
  • [4] GENERATIVE ADVERSARIAL NETWORK WITH FOLDED SPECTRUM FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Wenyue
    Yin, Jihao
    Han, Bingnan
    Zhu, Hongmei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 883 - 886
  • [5] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON GENERATIVE ADVERSARIAL NETWORK WITH DROPBLOCK
    Yin, Jihao
    Li, Wenyue
    Han, Bingnan
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 405 - 409
  • [6] Hyperspectral Image Classification Based on Transformer and Generative Adversarial Network
    Wang, Yajie
    Shi, Zhonghui
    Han, Shengyu
    Wei, Zhihao
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2022, 13631 : 212 - 225
  • [7] Dual hybrid convolutional generative adversarial network for hyperspectral image classification
    Shi, Cuiping
    Zhang, Tianyu
    Liao, Diling
    Jin, Zhan
    Wang, Liguo
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (14) : 5452 - 5479
  • [8] HyperViTGAN: Semisupervised Generative Adversarial Network With Transformer for Hyperspectral Image Classification
    He, Ziping
    Xia, Kewen
    Ghamisi, Pedram
    Hu, Yuhen
    Fan, Shurui
    Zu, Baokai
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6053 - 6068
  • [9] Generative Adversarial Networks for Hyperspectral Image Classification
    Zhu, Lin
    Chen, Yushi
    Ghamisi, Pedram
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5046 - 5063
  • [10] ADAPTIVE NEIGHBORHOOD STRATEGY BASED GENERATIVE ADVERSARIAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Liang, Hongbo
    Bao, Wenxing
    Lei, Bingbing
    Zhang, Jian
    Qu, Kewen
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 862 - 865