The distribution of stellar mass in the low-redshift Universe

被引:328
|
作者
Li, Cheng [1 ,2 ]
White, Simon D. M. [1 ]
机构
[1] Max Planck Inst Astrophys, D-85741 Garching, Germany
[2] Shanghai Astron Observ, MPA SHAO, Joint Ctr Astrophys Cosmol, Shanghai 200030, Peoples R China
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
galaxies: clusters: general; galaxies: distances and redshifts; cosmology: theory; dark matter; large-scale structure of Universe; DIGITAL SKY SURVEY; SPECTROSCOPIC TARGET SELECTION; GALAXY CORRELATION-FUNCTION; STAR-FORMATION HISTORIES; LUMINOSITY FUNCTION; LOCAL UNIVERSE; DATA RELEASE; BLACK-HOLES; DEPENDENCE; SAMPLE;
D O I
10.1111/j.1365-2966.2009.15268.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We use a complete and uniform sample of almost half a million galaxies from the Sloan Digital Sky Survey to characterize the distribution of stellar mass in the low-redshift Universe. Galaxy abundances are well determined over almost four orders of magnitude in stellar mass and are reasonably but not perfectly fit by a Schechter function with characteristic stellar mass m(*) = 6.7 x 1010 M-circle dot and with faint-end slope alpha = -1.155. For a standard cosmology and a standard stellar initial mass function, only 3.5 per cent of the baryons in the low-redshift Universe are locked up in stars. The projected autocorrelation function of stellar mass is robustly and precisely determined for r(p) < 30 h-1 Mpc. Over the range 10 h-1 kpc < r(p) < 10 h-1 Mpc, it is extremely well represented by a power law. The corresponding three-dimensional autocorrelation function is xi*(r) = (r/6.1 h-1 Mpc)-1.84. Relative to the dark matter, the bias of the stellar mass distribution is approximately constant on large scales, but varies by a factor of 5 for r(p) < 1 h-1 Mpc. This behaviour is approximately but not perfectly reproduced by current models for galaxy formation in the concordance Lambda cold dark matter cosmology. Detailed comparison suggests that a fluctuation amplitude Sigma(8) similar to 0.8 is preferred to the somewhat larger value adopted in the Millennium Simulation models with which we compare our data. This comparison also suggests that observations of stellar mass autocorrelations as a function of redshift might provide a powerful test for the nature of Dark Energy.
引用
收藏
页码:2177 / 2187
页数:11
相关论文
共 50 条
  • [1] Autocorrelations of stellar light and mass in the low-redshift Universe
    Li, Cheng
    White, Simon D. M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2010, 407 (01) : 515 - 519
  • [2] Deep learning prediction of galaxy stellar populations in the low-redshift Universe
    Wang, Li-Li
    Yang, Guang-Jun
    Zhang, Jun-Liang
    Rong, Li-Xia
    Zheng, Wen-Yan
    Liu, Cong
    Chen, Zong-Yi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (04) : 10557 - 10563
  • [3] Galaxy groups in the low-redshift Universe
    Lim, S. H.
    Mo, H. J.
    Lu, Yi
    Wang, Huiyuan
    Yang, Xiaohu
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 470 (03) : 2982 - 3005
  • [4] The gas and stellar mass of low-redshift damped Lyman-α absorbers
    Kanekar, Nissim
    Neeleman, Marcel
    Prochaska, J. Xavier
    Ghosh, Tapasi
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (01) : L54 - L58
  • [5] THE ENVIRONMENT OF BARRED GALAXIES IN THE LOW-REDSHIFT UNIVERSE
    Lin, Ye
    Sodi, Bernardo Cervantes
    Li, Cheng
    Wang, Lixin
    Wang, Enci
    ASTROPHYSICAL JOURNAL, 2014, 796 (02):
  • [6] Mining circumgalactic baryons in the low-redshift universe
    Liang, Cameron J.
    Chen, Hsiao-Wen
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 445 (02) : 2061 - 2081
  • [7] Multiwavelength mock galaxy catalogues of the low-redshift Universe
    Paranjape, Aseem
    Choudhury, Tirthankar Roy
    Sheth, Ravi K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 503 (03) : 4147 - 4162
  • [8] The SAMI Galaxy Survey: the low-redshift stellar mass Tully-Fisher relation
    Bloom, J. V.
    Croom, S. M.
    Bryant, J. J.
    Callingham, J. R.
    Schaefer, A. L.
    Cortese, L.
    Hopkins, A. M.
    D'Eugenio, F.
    Scott, N.
    Glazebrook, K.
    Tonini, C.
    McElroy, R. E.
    Clark, H. A.
    Catinella, B.
    Allen, J. T.
    Bland-Hawthorn, J.
    Goodwin, M.
    Green, A. W.
    Konstantopoulos, I. S.
    Lawrence, J.
    Lorente, N.
    Medling, A. M.
    Owers, M. S.
    Richards, S. N.
    Sharp, R.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (02) : 1809 - 1824
  • [9] SPECTROPHOTOMETRY OF LOW-REDSHIFT QUASI-STELLAR OBJECTS
    BALDWIN, JA
    ASTROPHYSICAL JOURNAL, 1975, 201 (01): : 26 - 44
  • [10] Standard Rulers, Candles, and Clocks from the Low-Redshift Universe
    Heavens, Alan
    Jimenez, Raul
    Verde, Licia
    PHYSICAL REVIEW LETTERS, 2014, 113 (24)